APP下载

江南造山带西南段摩天岭穹隆脆韧性剪切与铀成矿作用

2019-10-11陈峰颜丹平邱亮杨文心汤双立郭庆银张翼西

岩石学报 2019年9期
关键词:糜棱岩铀矿床韧性

陈峰 颜丹平, 2 邱亮 杨文心 汤双立 郭庆银 张翼西

1. 中国地质大学地球科学与资源学学院,北京 1000832. 中国地质大学地质过程与矿产资源国家重点实验室,北京 1000833. 中国核工业地质局,北京 100013

江南造山带位于华南扬子板块与华夏板块结合部位东南缘,为多期次洋陆俯冲、碰撞造山与陆内变形递进发展演化的产物(Chenetal., 1991; 丘元禧等, 1998; Yanetal., 2003a; Charvetetal., 2010; Hu and Zhou, 2012; 周金城等, 2014; Wangetal., 2006)。沿江南造山带发育了包括热液铀矿床在内的一系列重要低温热液矿床,构成了我国重要的铀资源基地(陈毓川和毛景文, 1995; Lietal., 2002; 黄净白和黄世杰, 2005; Maoetal., 2013; 蔡煜琦等, 2015; 胡瑞忠等, 2015, 2016; Huetal., 2017)。这些铀矿床具有明显的空间分布规律:碳硅泥岩型铀矿床主要发育于江南造山带西南段;火山岩型铀矿床主要分布于东南沿海和赣杭火山岩带中;花岗岩型铀矿床主要发育于华南板块加里东期后伸展隆起带(Huetal., 1993, 2008, 2009; 张万良, 2011; 华仁民等, 2013; 张万良和邹茂卿, 2013)(图1)。

图1 华南构造地质及铀矿床分布简图(据Yan et al., 2003a; Hu et al., 2008; Zhao et al., 2011a;许效松等, 2012; Qiu et al., 2018; 梁良等, 2019修改)a=三防韧性剪切带;b=本洞韧性剪切带;c=四堡韧性剪切带;d=元宝山韧性剪切带;e=三江-融水韧性剪切带;f=龙胜韧性剪切带;g=越城岭韧性剪切带. 1=184矿床;2=3110矿床;3=许家洞矿床;4=相山矿床;5=草头背矿床;6=681矿床;7=570矿床;8=376和374矿床(本文);9=6217矿床;10=河超坑矿床;11=下庄矿床;12=361矿床;13=302矿床;14=322矿床;15=720矿床;16=320矿床.康滇岛弧杂岩体年龄来自Zhao et al., 2011a;Zhou et al., 2002;四堡群年龄来自王剑,2000;Wang et al., 2006,2012a;高林志等,2010;Zhao and Cawood, 2012及所附参考文献;Zhang et al., 2019;丹洲群年龄来自曾雯等,2005;Zhang et al., 2008;Wang and Zhou, 2012;Wang et al., 2012b;高林志等,2013;Lan et al., 2014;Zhao, 2015;寇彩化等,2017;早古生代花岗岩年龄来自张芳荣等,2009;Wang et al., 2013及所附参考文献;韧性剪切带热年代学数据来自施实,1976;张祖还等,1984;广西壮族自治区地质矿产局,1985;湖南省地质矿产局,1988;舒良树等,1999;张桂林,2004;金宠,2010;汤世凯等,2014;张雪锋,2015Fig.1 Simplified geological map of South China showing tectonics and distribution of uranium deposits (modified after Yan et al., 2003a, b; Hu et al., 2008; Zhao et al., 2011a; Xu et al., 2016; Qiu et al., 2018; Liang et al., 2019)a=Sanfang ductile shear zone; b=Bendong ductile shear zone; c=Sibao ductile shear zone; d=Yuanbaoshan ductile shear zone; e=Sanjiang-Rongshui ductile shear zone; f=Longsheng ductile shear zone; g=Yuechengling ductile shear zone. 1=184 ore deposit; 2=3110 ore deposit; 3=Xujiadong ore deposit; 4=Xiangshan ore deposit; 5=Caotoubei ore deposit; 6=681 ore deposit; 7=570 ore deposit; 8=376 and 374 ore deposit (this study); 9=6217 ore deposit; 10=Hechaokeng ore deposit; 11=Xiazhuang ore deposit; 12=361 ore deposit; 13=302 ore deposit; 14=322 ore deposit; 15=720 ore deposit; 16=320 ore deposit. The data for Kangdian arc complex from Zhao et al., 2011a; Zhou et al., 2002; those for Sibao Group from Wang, 2000; Wang et al., 2006, 2012a; Gao et al., 2010; Zhao and Cawood, 2012 and references therein; Zhang et al., 2019; those for Danzhou Group from Zeng et al., 2005; Zhang et al., 2008; Gao et al., 2013; Lan et al., 2014; Zhao, 2015; Kou et al., 2017; those for Early Paleozoic granites from Zhang et al., 2009; Wang et al., 2013 and references therein; those for thermochronology of ductile shear zone from Shi, 1976; Zhang et al., 1984, BGMRG, 1985; BGMRH, 1988; Shu et al., 1999; Zhang, 2004; Jin, 2010; Tang et al., 2014; Zhang, 2015

以往研究表明铀矿床类型及其分布与构造单元具有相关性,至少是与白垩纪至古近纪的构造作用密切相关(张祖还等, 1984; 余达淦, 1994; Huetal., 1993, 2008)。但这些研究大多以单个铀矿床的成矿地质及矿化特征为主要内容,对铀成矿作用与区域地质、构造体制及其转化的关系涉及较少。对于容矿构造(裂隙)性质的解析也较少,构造变形与成矿机制的联系较薄弱,造成对矿床成因认识尚未统一。为了阐明华南花岗岩型铀矿床的形成机理,较多学者对这类铀矿床进行了系统的对比分析,提出了一系列成矿模式(倪师军等, 1994; 李子颖等, 1999; 李子颖, 2006; Huetal., 1993, 2008, 2009; 张万良和邹茂卿, 2013; Luoetal., 2015; 张珂, 2001; 张珂等, 2011),但这些模式缺少对构造体制转换与铀成矿关系的深入讨论。

位于江南造山带西南段末端摩天岭穹隆的铀矿床,具有异常大的矿岩时差,目前被认为是华南最老的铀矿床,成矿作用在晚古生代和古近纪均有发生(张祖还等, 1984; Huetal., 2008)。出露于地表宽达15km的脆韧性剪切带是摩天岭铀矿床最重要的成矿构造。矿体及围岩中发育有典型的长英质糜棱岩、粗糜棱岩、碎裂岩、构造角砾岩等,并相互叠加在一起,且为后期逆冲断层改造,代表了不同构造层次地壳变形的产物。张桂林(2004)描述了三防岩体西侧边缘存在SE缓倾的糜棱岩,这与376矿床矿体产状一致,但未明确SE倾与NW倾糜棱岩带之间的空间关系。由于铀元素的活化、迁移和沉淀过程与脆韧性剪切带紧密相关(韦昌山和翟裕生, 1996; Yanetal., 2003b, c; Qiuetal., 2018),因此理顺该矿区的脆韧性带转换过程是认识铀成矿的关键,阐述铀成矿的构造背景十分必要。为此,本文主要根据野外调查和构造解析结果,结合376矿床和374矿床勘查资料,通过厘定构造变形序列,综合分析各种构造要素与矿化蚀变的关系,认为脆韧性构造体制转换条件下的递进变形过程严格控制了铀矿化的形成。

1 地质背景

横亘于华南板块中部的江南造山带呈NE-NEE向展布,是新元古代中期由北西侧扬子板块与南东侧华夏板块碰撞拼合而成(郭令智等, 1996; Yanetal., 2003a; Wangetal., 2007; 薛怀民等, 2010; Zhaoetal., 2011a)。根据区域地质和地球物理资料,前人将碰撞缝合带的南东界沿江绍缝合带并往南延至越城岭东侧,北西界大致沿大庸断裂展布(图1)(Guo and Gao, 2018; Guoetal., 2019)。

江南造山带出露的最老地层为新元古界四堡群,总厚度>5.70km(广西壮族自治区地质矿产局, 1985)。新元古界丹洲群不整合覆盖在四堡群之上,下部为钙质片岩、绿泥片岩、大理岩夹千枚岩,中部为千枚岩夹板岩和变质砂岩,上部为变质砂岩(Wangetal., 2012a, b),厚度0.97~4.78km;南华-震旦系为变质含砾砂岩,总厚度0.36~4.86km,与丹洲群为整合接触;寒武系主要是一套以砂、页岩为主的沉积,底部夹有硅质岩,下部夹有炭质页岩,中部夹灰岩,厚度1.64~3.10km。泥盆系-石炭系为碳酸盐岩建造,总厚度0.96~2.74km(图2b)。

江南造山带经历四堡、雪峰、加里东、海西、印支、燕山、喜马拉雅等多期次构造运动(毛景文, 1988; Charvetetal., 1996; Yanetal., 2003a; Huetal., 2008)。至约860~835Ma,在扬子板块东南缘沉积了四堡群(与/梵净山群/冷家溪群相当)(Wang and Li, 2003; Zhaoetal., 2011a; 颜丹平等, 2018);820~810Ma的四堡运动(相当或稍早于与雪峰运动/武陵运动)导致江南造山带西南段构造变形以近SN向收缩构造为主,这与罗迪尼亚(Rodinian)时期华夏板块向北俯冲于扬子板块之下并形成新元古代岩浆岛弧带的模式一致(Zhaoetal., 2011a);四堡运动以后,在罗迪尼亚(Rodinian)超大陆裂解的全球构造背景下,伴随着大规模火山岩浆活动,以四堡群及其相当地层为褶皱基底,在四堡运动不整合面之上沉积了丹洲群(与湘赣地区板溪群相当)(颜丹平等, 2002; Wangetal., 2006, 2012a; 汪正江等, 2013)。在南华大裂谷背景下,丹洲群之上沉积了一套厚度不一的楔状沉火山岩以及震旦系(Wang and Li, 2003; 杨菲等, 2012; 汪正江等, 2013),以整合接触为主,局部为平行不整合接触;760~836Ma,江南造山带基底被新元古代花岗岩侵入,沿造山带呈带状分布(Lietal., 1999; Wangetal., 2006; 柏道远等, 2010; 薛怀民等, 2010; Zhaoetal., 2011a; 杜云等, 2017)(图1)。镁铁-超镁铁质基性/超基性侵入岩分布在湘西益阳-古丈-黔阳-通道到桂北龙胜一带,分为860~810Ma(四堡期)和770~750Ma(雪峰期)两个峰期(葛文春等, 2001; Wangetal., 2014; Linetal., 2016; Kouetal., 2018及所附参考文献)(图2)。寒武纪-志留纪,前南华裂谷构造反转发育前陆盆地(Shuetal., 2008; Wangetal., 2013; Yao and Li, 2016)。晚奥陶世末-志留纪晚期,城步-新化断裂和大庸断裂的形成,代表了华南加里东期造山运动在江南造山带影响的西界(金宠, 2010)(图1)。华南早古生代变质作用强烈,华夏板块一侧中-高级区域变质岩,如麻粒岩、斜长角闪岩、片麻岩以及混合岩化等广泛发育(Wanetal., 2007; Faureetal., 2009);然而,江南造山带出露的区域变质岩则以低级绿片岩相板岩、千枚岩为主。早古生代岩浆作用主要发育在华夏板块武夷山-云开大山区域及江南造山带东南缘,其他地区零星出露或不发育(孙涛, 2006; Songetal., 2015)。泥盆系-中生界盖层超覆在早古生界之上而呈不整合接触关系,标志着此次造山运动的结束。随着地壳的隆升和构造体制由挤压向伸展的构造体制转换,华南进入了造山后的伸展垮塌阶段(Charvetetal., 2010; Faureetal., 2014; Sunetal., 2018),于华南形成了一套独具特色的伸展滑脱型韧性剪切构造系统(张桂林和梁金城, 1993; 梁国宝和黄少棠, 1997; 张桂林等, 2002; 张桂林, 2004; 张晓丽和何金先, 2010; 张雪锋等, 2015)。这些韧性剪切带以一系列NNE向平行雁列式排列为特征,全部切割了新元古代花岗岩体和超镁铁质岩体,并被后期新生代脆性断层切割剥露至地表(汤世凯等, 2014; Qiuetal., 2015)。从西到东依次发育:三防韧性剪切带、本洞韧性剪切带、四堡韧性剪切带、元宝山韧性剪切带、三江-融水韧性剪切带、龙胜韧性剪切带和越城岭韧性剪切带塘洞韧性剪切带和南雄韧性剪切带(图1)。中三叠世晚期印支运动导致上古生界-中三叠统因陆内造山作用而形成NW-SE向褶皱及同走向逆冲断裂(Qiuetal., 2014; Linetal., 2008; Wangetal., 2013)。华南板块在白垩纪-古近纪经历了多期次地壳伸展作用,形成了许多白垩纪-古近纪盆地及基性岩墙群(Huetal., 2008)。伴随整个亚洲及中国东部太平洋板块的斜向俯冲,强烈的NNE向构造影响到江南造山带,沿这些断裂发育了大规模热液铀成矿作用(杜乐天, 2001; 杜乐天和王文广, 2009)。

图2 摩天岭构造穹隆地质图(a)、构造-地层柱状图(b)与构造剖面图(c)

376矿床的赤平投影代表糜棱面理与矿物拉伸线理;374矿床的赤平投影代表糜棱面理产状.韧性剪切带40Ar/39Ar年龄数据来源:404.3±6.2Ma(绢云母)和425.7±0.9Ma(白云母)(张桂林,2004);MT45=363.0±3.6Ma(黑云母)、MT71=417.1±2.3Ma(白云母)和MT23=414.6±3.2Ma(白云母)(Qiuetal., 2019);419.4±2.3Ma~393.2±4.9Ma(伊利石)(张雪锋, 2015).平均铀含量数据来源:泥盆系-石炭系(刘继顺和章邦桐,1992);丹洲群(舒孝敬等,2012);三防花岗岩(赖伏良,1982);本洞花岗闪长岩(Li, 1999; Wangetal., 2006)

Fig.2 Geological map (a), tectono-strata column (b) and structural crossections (c) of the Motianling tectonic dome

Stereographic projection of No.376 ore deposit represents mylonite foliation and mineral stretching lineation; Stereographic projection of Bo.374 ore deposit represents mylonite foliation. Age of40Ar/39Ar for ductile shear zones are noted: 404.3±6.2Ma (sercite) and SW-4=425.7±0.9Ma (muscovite) (Zhang, 2004); MT45=363.0±3.6Ma (biotile), MT71=417.1±2.3Ma (muscovite), MT23=414.6±3.2Ma (muscovite) (Qiuetal., 2019); 419.4±2.3~393.2±4.9Ma (illite) (Zhang, 2015); Data of the average uranium content: Devonian-Carboniferous (Liu and Zhang, 1992); Danzhou Group (Shuetal., 2012); Sanfang granite (Lai, 1982); Bendong granodiorite (Li, 1999; Wangetal., 2006)

华南发育的多期大规模铀矿床分布于不同的地层及岩浆单元,没有地层和岩性的成矿专属性(巫建华等, 2017),但受区域构造控制特别明显。此外,各地层较高的铀含量(>6×10-6)(图2b),远高于扬子板块上地壳平均值(1.40×10-6)(Gaoetal., 1998);矿床学及岩相学研究表明,新元古代三防花岗岩平均铀本底值达12×10-6(图2b)(Wangetal., 2012a; Qiuetal., 2018及其所附参考文献);华南产铀岩体的铀背景平均值也大于10×10-6,水岩反应实验表明铀浸出率达到20%~60%(徐争启等, 2014),有利于铀元素的活化、迁移和富集成矿。

2 摩天岭穹窿构造样式与构造序列

三防岩体位于江南造山带西南端(图1),宽约15~20km,延伸达60km,总体NNE走向(图2a),呈岩基状侵位于由中元古界四堡群浅变质粉砂岩、千枚岩和丹洲群组成的摩天岭构造穹隆核部。花岗岩体与四堡群围岩呈侵入接触,并侵入本洞岩体(图2a, b)。岩体主要由中粗粒斑状黑云(二云)母花岗岩、中粒似斑状黑云(二云)母花岗岩和细粒(或含斑)黑云母花岗岩组成。

图3 摩天岭典型矿床地质图及控矿构造剖面图(a) 376矿床(据Qiu et al., 2018修改);(b) 376矿床1号矿带3号勘探线(本文);(c、d) 374矿床及4号勘探线(据Qiu et al., 2018修改)Fig.3 Geological map and cross-section through the No.376 (a, b) and No.374 uranium deposit (c, d), showing the structural controlling within the deposit (a, c, d modified after Qiu et al., 2018)

三防岩体两侧地层褶皱主要以小型线状紧密褶皱为特征,组成复式褶皱,其轴向近EW向,后期构造的叠加导致大规模的隆起,形成了三防岩体现今的叠加构造穹隆(图2a)。新元古界四堡群变质岩与三防岩体呈突变接触关系,接触界线不规则(图2b)。该区断裂构造非常发育,按其走向分为NW向和NNE向两组(图2c、图3)。NW向断裂规模较小,具张性特征,走向NW295°~310°,倾向SW,倾角50°~80°,以F40、F41、F43、F52为代表,带内充填硅质,断续分布构造角砾岩(图3a)。蚀变带一般沿断裂带或者破碎带分布,并向外延至角砾岩化岩石中,宽度为数十厘米(图3b)。NNE向断裂规模较大,长度约7km,大致平行排列,稍有斜交复式背斜轴向的压扭性断裂组成,走向NE10°~23°,倾向NW,倾角45°~50°,呈平行产出,以麻木岭、高强、高武以及穿过374矿床的乌指山等断裂为代表,带内充填硅质,发育碎裂岩(图3c, d)。摩天岭地区铀化即产于三防岩体内部,其中代表性矿床包括376矿床和374矿床(图2a)。

在前人对摩天岭地区的工作成果基础上,对贯穿摩天岭构造穹窿的剖面(A-A’和B-B’)(图2c)的构造样式及组合的详细解析表明,摩天岭构造穹窿清晰地记录了新元古代褶皱基底变形事件、加里东期造山后伸展阶段及白垩纪以来的叠加改造等演化序列。

2.1 D1期构造变形特征

这个阶段的变形以丹洲群与四堡群角度不整合接触、NWW-近EW向纵弯褶皱,以及区域内大量近EW向线性构造发育为特征(图2a)。此角度不整合主要反映四堡群经历了雪峰期(~820Ma)近SN向的收缩构造变形,与后期沉积的丹洲群表现出不同的构造样式(图2b)。在本洞岩体西侧出露的四堡群,保存了近东西向的褶皱,局部为轴面南倾的倒转褶皱。

D1期构造样式总体表现为轴面南倾的褶皱变形,实质上代表了Rodinia超大陆聚合阶段华夏与扬子板块间洋、陆俯冲和弧后盆地的关闭过程(徐先兵等, 2015),也即江南造山带的的造山过程(颜丹平等, 2002; Wangetal., 2014)。近乎同期的三防岩体侵入四堡群,并被丹洲群覆盖(图2a, c),是摩天岭铀矿床赋矿围岩的形成阶段。

2.2 D2期构造变形特征

D2期构造以倾向SE的掩卧褶皱(图4a, b)和韧性剪切带为特征。在三防岩体西侧新村一带,保留有早期倾向SE的构造面理(图2a, c),并为倾向NW的后期韧性剪切变形组构所叠加和改造(图4c)。根据韧性剪切带中发育有明显的S-C组构判断,构造运动学呈SE指向。在点MT065处,韧性剪切带粗糜棱岩中斜长石斑晶粒径1~3cm,剪切旋转后形成S面理,暗色矿物退变质形成C面理,构成S-C组构(图4b)。由于多期构造叠加作用,其指示的韧性剪切方向较为复杂,既有西向剪切,又有SE向剪切,在点MT074和MT75处,糜棱面理分别为80°∠45°和283°∠42°,其交切关系仍不清楚。但上述结果表明至少有两期韧性剪切带,即早期指向NW的逆向剪切和晚期指向NW和SE的正向剪切。区域上的韧性剪切带(四堡剪切带、元宝山剪切带)也同样存在SE缓倾的产状(周守余等, 2012),而且运动学剪切指向均向NW向逆冲(张桂林, 2004; 张雪锋, 2015)。

早古生代华南发生了强烈的板内造山作用(Shuetal., 2008; Wangetal., 2013; 颜丹平等, 2018),被称作华南的“加里东运动”(程裕淇和王鸿祯, 2006)。这期造山运动在江南造山带东段的挤压时代被限定在460~435Ma之间(Wangetal., 2013; 徐亚军和杜远生, 2018及所附参考文献),加里东期同造山侵入岩结晶年龄变化于460~410Ma(Faureetal., 2009; Charvetetal., 2010; Wangetal., 2013; Chuetal., 2012; Songetal., 2015; Xuetal., 2016; Yanetal., 2017)。Faureetal. (2009)报道了江南造山带中东段主造山期的韧性剪切变形时代为453±7Ma。桂北苗儿山岩体附近的雪峰期岩体遭受了糜棱岩化,而加里东期岩体却未经历韧性剪切变形,表明桂北地区存在加里东早-中期的韧性剪切作用(杜云等, 2017)。张雪锋等(2015)在对韧性剪切带运动学和构造年代学研究的基础上,将摩天岭地区向NW的斜向挤压逆冲变形事件限定在453Ma,并认为是华夏板块由SE向NW斜冲到扬子板块的产物。华南加里东造山波及的范围向西可以到达摩天岭西侧的三都-凯里断裂(汤世凯等, 2014)。因此摩天岭地区早期SE倾的韧性剪切带可能与加里东期造山的挤压事件有关。虽然早期糜棱岩的规模尚不清楚,但由于该期为挤压型剪切构造,并不具有导致成矿的流体与成矿空间,沥青铀矿的成矿年龄表明,摩天岭构造穹窿在进变形过程中的D2期构造并不成矿。

2.3 D3期构造变形特征

以广泛分布的片麻状构造为特征,剪切指向NWW,片麻产状与岩体走向基本一致,为韧性剪切带的典型构造样式。区内韧性剪切带发育规模和变形强度不等,宽度一般在1km左右,但沿走向延伸规模可达40km以上(图2a)。自北而南由NE向逐渐转变为NNE向,倾角变化于15°~30°至50°~70°之间(图2c)。从组成上看,韧性剪切带具有明显的分带性:一般花岗质糜棱岩或者超糜棱岩发育于剪切带中部(Ⅰ带)(图4b, d),主要是表现为S面理和C面理。斜长石、石英等强烈拉长而呈丝带状(图5f),局部观察石英呈矩形条带,两侧为云母所限制,表明具有静态重结晶恢复,并常叠加后期的脆性变形而形成糜棱岩质角砾(图5a, e);向两侧渐变为花岗质糜棱岩带(Ⅱ带)、花岗质粗糜棱岩带(Ⅲ带)和围岩花岗岩。

图4 摩天岭地区典型野外构造照片(照片位置见图2a, c)(a、b)新元古界四堡群中的早期面理(S1)被构造置换(S2);(c)高武断层及其产状(赤平投影);(d)高武断层发育S-C组构,显示顶部指向NWW的正向剪切作用;(e) 376矿床区域硅化带,倾向NW;(f)韧性剪切带中发育典型的云母鱼,石英增生边,白云母与绿泥石均定向排列(MT65);(g) 374矿床中发育的花岗质糜棱岩;(h)乌指山断裂中的韧性剪切生成的糜棱岩与脆性破裂产生的碎裂岩共生Fig.4 Field pictures showing the structural styles and geological relationships in the Motianling district (picture locations are seen in Fig.2a and Fig.2c)(a, b) the early foliation (S1) are replaced by the late foliation (S2) in Sibao Group, Neoproterozoic; (c) Gaowu fault and its occurrence (stereographic projection); (d) S-C fabric in Gaowu fault showing the shearing top-to-southeast; (e) regional silicified zone in No.376 ore deposit with dip of northwest; (f) representative mica fish in ductile shear zone, quartz accretion edge, preferred orientation of both muscovite and chlorite (MT65); (g) granitic mylonite in No.374 ore deposit; (h) ductile shearing mylonite and brittle cataclasite are together in Wuzhishan fault

图5 脆韧性剪切带及蚀变带显微照片(照片位置见图2a, c)(a)三防岩体南部与四堡群接触带附近,碎裂岩叠加改造早期糜棱岩,MT16;(b)韧性剪切带中的云母与石英定向排列形成的构造面理,MT29;(c) 376矿床南侧糜棱岩(S1)被后期面理(S2)构造置换,MT23;(d)位置见图5c,显微构造尺度的构造置换现象;(e)典型的碎裂岩化及石英细粒化重结晶;(f)四堡群与三防岩体的接触界线处极其发育的片理Fig.5 Microphotographs showing representative examples of the brittle-ductile shear zone and hydrothermal alteration (picture locations are seen in Fig.2a and Fig.2c)(a) early mylonite are transformed by cataclasite near the contect zone between south of Sanfang granitic rocks and Sibao Group, MT16; (b) tectonic foliation comprised of the preferred orientation of both mica and quartz in ductile shear zone, MT29; (c) the early mylonite (S1) are replaced by the late foliation (S2) in south of No.376 ore deposit; (d) inset of Fig.5c, tectonic transposition on a microscopic scale; (e) representative cataclastic lithification and recrystallization shown by fine quartz; (f) schistosity that developed extremely in contect zone between Sibao Group and Sanfang granite

例如在MT65点处,韧性剪切带中粗糜棱岩中发育有S-C组构,斜长石斑晶粒径2~6cm,剪切旋转后与S面理平行,并在其两端形成拖尾现象,石英晶体拉长并发生旋转,在其尾端旋转最大位置处与旋转碎斑系的压力影构造收敛重合,一般暗色矿物含量增加,从而形成C面理(图4d、图5)。韧性剪切带波状起伏,总体向NW倾,S-C组构指示的韧性剪切方向为向西正向剪切(图4c、图5c),剪切方向倾伏向为285°,倾伏角为30°,属于正向韧性剪切带(图2a)。

早期形成的主要岩性为粗糜棱岩,并普遍观察到劈理等构造,显微构造观察表明,斜长石和石英具有定向拉长的韧性变形特征,但钾长石等没有明显的韧性变形行为。这种韧性变形、脆韧性变形与脆性变形(构造角砾岩及碎裂岩等)在同一个观察点共生的现象指示了构造发育的递进变形过程(图5a)。除韧性剪切带外,区域性的大断裂、劈理带及蚀变带等与矿化富集相关的构造也很发育。其中断裂包括麻木岭断裂南段和高武断层(图4a),石英脉体及高岭土化蚀变则普遍分布于376矿床周围。高武断层为近南北走向的大断层,位于三防韧性剪切带的上盘,断层面平直光滑,断层面产状为280°∠36°,275°∠35°以及300°∠30°(依次往北),顺断层面发育总厚度大于50m的硅化带(图4e),沿断层主破裂面被纯白色石英脉所充填,属于三防韧性剪切带正向剪切活动的晚期。

2.4 D4期构造变形特征

伸展构造(D4)是研究区内表现最为清楚和显著的构造,包括指向N或NW的韧性剪切带、脆韧性转换带、构造角砾岩、断层泥等。构造运动学指向西的正向剪切作用与断层活动,在剖面上清楚反映了由韧性变形-脆韧性变形-脆性变形的演化过程,代表了区域性向西倾的伸展构造。此外,发育贯穿岩体的高武断层中的韧性剪切带,在该期表现为正断层,包括在剖面北西西段多条小规模倾向西的正断层,在其基础上形成的断层破碎带形成硅化带,与374矿床第二次成矿吻合。野外调查结果显示,岩体边部发育有多组劈理,劈理面代表性产状为132°∠35°和220°∠75°,以及可见宽度为数厘米的石英脉肠状褶曲,褶曲轴面与劈理面近平行。这期构造使得对冷凝边观察和判断难度加大。

2.5 D5期构造变形特征

D5期构造主要表现为乌指山逆断层脆性逆冲构造叠加于向NW正向剪切的韧性剪切带(D3)之上。在MT46点往南断层面产状为273°∠37°,272°∠39°以及368°∠40°。高武断层及其硅化带被另一逆冲断层所切割,其具有以下特征:(1)逆冲断层面呈波状起伏,断层面产状为243°∠66°;(2)发育碎裂岩带,宽10~20cm不等,由硅质碎裂岩组成,发育断层泥;(3)断层面两侧的破碎石英脉和断层面上的擦痕阶步也指示为逆冲断层。

石英脉形成以后发育逆冲构造,切割关系说明其形成时代晚于高武断层硅化带,表明D4期伸展构造之后还存在挤压构造(图4)。高强断裂走向NNE,断层面波状起伏,断层两盘发育次级破裂面,顺层破裂面发育纯净白色的张性脉。断层两盘发育间隔劈理,上盘劈理面0°∠56°,下盘劈理面291°∠54°和301°∠34°,指示断层为压扭性断层。局部产状变化大,断层产状为94°∠66°,切割了前述两类不同产状的韧性剪切带,表明其晚于韧性变形。渐新世及以后,以发育向东的脆性逆冲断层为特征,主要沿D3期韧性剪切带的发育,因此主体叠加于韧性剪切变形之上,并改造早期的变形构造。在区域上代表了雪峰山快速隆升的过程。D5期构造规模不大,但是为穹隆的主要隆升阶段,为374矿床和376矿床的剥露阶段,即矿床的破坏与改造阶段。在摩天岭穹隆发现的最新铀成矿年龄为47Ma,即374矿床顶部矿体。低温年代学研究结果表明,40Ma以来地表的岩矿石样品以低于120℃,属于浅表地壳。岩体剥蚀深度计算表明374矿床形成深度约为1.5km(罗寿文, 2010)。按照剥露速度0.03km/Myr计算(郑大瑜和郑懋公, 1981; 赖伏良, 1982; Qiuetal., 2015),被剥露至地表的时间为50Ma,与低温年代学研究结果一致(Qiuetal., 2015)。

3 摩天岭地区铀成矿地质特征

3.1 376矿床

三防岩体西部出露中元古界四堡群变质岩,并发育少量中基性、超基性岩脉侵入(图2a, c);东南部出露三防岩体边缘相细粒黑云母花岗岩、过渡相中粒黑云母花岗岩以及晚期侵入体细粒含斑黑云母花岗岩。376铀矿床位于三防岩体西南侧的NNE向麻木岭断裂附近。铀矿体产出于岩体与四堡群接触带内的脆韧性剪切带内(图3)。376矿床包含7条矿带100多个矿体,矿体绝大多数矿体呈透镜体状雁列式排列。矿带以NE向硅化带为主,但含矿硅化带与高强断裂产状相反,倾向南东。部分矿化受NWW向和少量近SN向脆性断裂控制,产于断层下盘的硅化带内,矿体产状与断层面平行产出(图4a, f)。矿体厚度<1m、长度60~200m、宽度40~80m(图3a, b),含矿岩性为肉红色绿泥石化花岗碎裂岩、细粒花岗岩。沿走向长220m,产状124°~135°∠52°~60°。

376矿床为碎裂蚀变岩型花岗岩铀矿床。矿石类型为铀-蠕绿泥石型,以沥青铀矿为主,地表氧化带见有铀黑、硅钙铀矿、脂铅铀矿、铜铀云母、钙铀云母等次生铀矿物;沥青铀矿具球状结构、胶状结构(图6c, d),细脉状、网脉状、浸染状和角砾状构造。脉石矿物主要有绿泥石、石英、白云母、绢云母、长石、方解石、萤石、辉沸石等;金属矿物有黄铁矿、磁黄铁矿、赤铁矿、黄铜矿、方铅矿、闪锌矿、辉铜矿等。

376矿床围岩蚀变作用较强、种类多,蚀变带宽2~5m,最宽20~30m,最窄数厘米。成矿内带蚀变主要有云英岩化、钾长石化、绿泥石化、黄铁矿化、赤铁矿化、硅化(图4c)、绢云母化、辉沸石化、萤石化、碳酸盐化、高岭土化等,外带蚀变表现较弱,主要有绿泥石化、硅化、黄铁矿化、碳酸盐化、萤石化等。云英岩化呈SN向或NW向条带状、团块状、枝叉状分布。岩石呈肉红色碎裂结构,伴随绿泥石化(图6a, b)、黄铁矿化、赤铁矿化。

3.2 374矿床

374矿床产出于摩天岭穹隆体中部偏东乌指山脆韧性剪切带南段,矿化在断层带上、下盘均有发育(图3)。374矿床围岩以片麻状粗粒黑云母花岗岩为主,局部出露四堡群残留体。矿化带内充填微晶石英,两侧由硅化、绢云母化、绿泥石化、黄铁矿化等构成蚀变带,叠加在乌指山硅化带之上,发育有后期向东的中高角度逆冲变形。乌指山断裂带分布于摩天岭穹隆体东部(图2),出露长约16km,总体走向NNE,倾向NW,倾角38°~60°,宽0.2~150m,一般宽10~30m,断裂面呈舒缓波状,构造破碎带膨胀收缩明显。带内充填微晶石英,两侧由硅化、绢云母化、绿泥石化、黄铁矿化等构成蚀变带。

图6 摩天岭地区典型铀矿化(样品ZK1-2)背散射电子图像(BSE)及电子探针(EPMA)分析(a、b)绿泥石化花岗岩;(c、d)样品中的铀矿物,EPMA铀含量结果来自本文. 其中图6b-d图片引自Qiu et al., 2018Fig.6 Back-scattered electron (BSE) images and electron probe microanalysis (EPMA) of representative mineralization in Sample ZK1-2 within the Motianling district(a, b) granite with chloritization; (c, d) BSE images and EPMA of uraninite grains within mineralized granite, showing the content of the uranium minerals (the data of EPMA from this study). Fig.6b-d are from Qiu et al., 2018

矿化以乌指山断裂为分隔带,存在倾向125°(倾角54°)和倾向294°(倾角53°)两种产状(图3)。374铀矿床及铀矿化点发育于FW断裂带南部膨胀体及其上下盘,膨胀体长800~1000m,宽>100m。上部矿体呈透镜状和脉状产出于800~1000m长、10~100m宽的蚀变带内,矿体长5~300m,厚0.13~0.58m(图3a);下盘矿体蚀变岩宽20m左右,与376矿床类似(图3b)。

374矿床铀矿物以沥青铀矿为主。氧化带含脂铅铀矿、硅钙铀矿、磷钙铀矿、铜铀矿及钙铀云母(图5)。矿石结构具胶状、碎斑状和溶蚀结构,球状、葡萄状、细脉状、网脉状、角砾状、浸染状构造。多阶段热液蚀变矿物以粉红色玉髓+暗紫色萤石+绿泥石+胶状黄铁矿+黄铜矿蚀变组合为特征。矿区内围岩蚀变具有明显的分带性,在硅化带内的蚀变以充填物微晶石英为主,绢云母和黄铁矿化次之;构造上盘绢云母化为主,硅化、黄铁矿化、绿泥石化次之;构造下盘以硅化、赤铁矿化为主,绢云母化、绿泥石化次之。

4 讨论

4.1 关键铀成矿期构造性质及时间限定

4.1.1 加里东期造山后伸展构造事件(D3)

关于NW倾向的糜棱岩带时代已有年代学限定。施实(1976)对三防岩体中的粗粒片麻状花岗岩进行研究,通过K-Ar同位素的方法获得了云母、长石变斑晶393~411Ma的冷却年龄。摩天岭花岗质糜棱片麻岩中新生白云母与绢云母的40Ar/39Ar年龄为425.67±0.9Ma~404.4±6.2Ma(张桂林, 2004; Qiuetal., 2019),黑云母40Ar/39Ar年龄为363Ma(Qiuetal., 2019);汤世凯等(2014)采自初糜棱岩中心带的白云母40Ar/39Ar坪年龄为416.4±1.8Ma,并测得黎平地区脆韧性剪切带中绢云母426.5±2.3Ma的40Ar/39Ar坪年龄。张雪锋(2015)获得了四堡韧性剪切带中新生伊利石393.2±4.9Ma~419.4±2.3Ma的40Ar/39Ar坪年龄和同构造新生绢云母404±19Ma的Rb-Sr年龄。金宠(2010)在三江断裂带中融水附近的千枚状板岩中通过绢云母获得约383Ma的40Ar/39Ar坪年龄。吴杰(2013)对越城岭韧性剪切带中的片麻状花岗岩进行锆石SHRIMP U-Pb法定年,获得了429.6±4.3Ma的结晶年龄,表明剪切变形的年龄应小于此年龄。

以上表明,摩天岭花岗质糜棱岩改期韧性剪切带变形年龄为426~363Ma。因此,江南造山带西南段NW倾韧性剪切带的活动时间形成时代被限定在晚志留世-早石炭世,对应于华南加里东期造山作用之后的伸展构造事件。江南造山带中段板溪群中广泛发育板劈理及同构造低温变质矿物,胡召齐等(2010)报道了同生伊利石389~419Ma的K-Ar冷却年龄,反映了加里东运动对江南造山带隆升和构造变形的影响。发育于摩天岭东侧的超镁铁质糜棱岩40Ar/39Ar年龄为339±36.4Ma(张桂林, 2004),但由于出现两个不同的坪年龄,且没有与铀矿床有直接的关系,不能用于与成矿相关的解释。这些年龄反映的是韧性剪切带演化过程中,当冷却至白云母/绢云母/黑云母的40Ar/39Ar封闭温度时所记录的年龄。

图7 摩天岭穹隆构造-沉积-岩浆-成矿-热事件与时代对比图

年龄来源:AFT (磷灰石裂变径迹)年龄(Qiuetal., 2015);成矿年龄(赖伏良,1982;张祖还等,1984;Huetal., 2008;徐争启等,2014;Qiuetal., 2015, 2018);韧性剪切带、华南加里东期花岗岩和丹洲群沉积年龄来源见图1注释;变质年龄(张祖还等,1984);云英岩化年龄(余中美,2012;宋昊等,2015);三防岩体年龄(施实,1976;李献华等,1996;Li, 1999;曾雯等,2005;Wangetal., 2006;湖南省地质调查院,2009(1)湖南省地质调查院. 2009. 1:5万岩寨、五团、城步县、白毛坪幅区域地质调查报告;马铁球等,2009;柏道远等,2010;余中美,2012;Zhaoetal., 2013;宋昊等,2015);区域基性岩年龄(Lietal., 1999;余中美,2012;Wangetal., 2006);四堡群鱼西组沉积年龄(Wangetal., 2007, 2012a;柏道远等,2010;高林志等,2010;Yangetal., 2015).黄色框为脆韧性变形时代范围,粉红色框为铀成矿温度带范围

Fig.7 Comparison diagram between tectonic-sedimentary-magmatism-metallogenesis-thermal event and time showing their genetic relationship in Motianling dome

Data sources: AFT (apatite fission track) (Qiuetal., 2015); metallogenic age (Lai, 1982; Zhangetal., 1984; Huetal., 2008; Xuetal., 2014; Qiuetal., 2015, 2018); ductile shear zone ages, Calidonian granite in South China, deposition of Danzhou Group and Sibao Group can be seen in annotation of Fig.1; metamorphism (Zhangetal., 1984); greisenization (Yu, 2012; Songetal., 2015); crystallization of Sanfang granitic rocks (Shi, 1976; Lietal., 1996, 1999; Zengetal., 2005; Wangetal., 2006; Maetal., 2009; Baietal., 2010; Yu, 2012; Zhaoetal., 2013; Songetal., 2015); regional basite (Lietal., 1999; Yu, 2012; Wangetal., 2006); Yuxi Formation of Sibao Group (Wangetal., 2007, 2012a; Baietal., 2010; Gaoetal., 2010; Yangetal., 2015). Yellow box are timing of brittle-ductile deformation, pink box are temperature range of uranium mineralization

三防岩体西侧边缘存在SE缓倾的糜棱岩,与376矿床的矿体产状一致,但以往的研究并未讨论SE倾向脆韧性剪切带与铀成矿的关系(梁国宝和黄少棠, 1997; 张桂林, 2004)。加里东期造山运动后,由挤压体制到伸展体制的构造转换在华南具有普遍性,主要表现为一系列的正向滑脱脆韧性剪切变形与成矿事件(图6)。然而特殊的是,376矿床的矿体产状为SE倾伏,沥青铀矿的主要成矿期为360~378Ma(广西壮族自治区305核地质大队,1980(2)广西壮族自治区305核地质大队. 1980. 桂北摩天岭花岗岩体铀矿成矿规律与成矿预测);张祖还等(1984)利用U-Pb法获得的沥青铀矿的等时线年龄为329Ma。Qiuetal. (2015)对三防岩体中两个沥青铀矿U-Pb定年获得了304±15Ma和295±44Ma的下交点年龄,认为代表了后期热液活动。徐争启等(2014)测得376矿床沥青铀矿的U-Pb年龄为408Ma。因此,第一期铀成矿时间被限定在408~295Ma之间(图7)。

此外,在江南造山带西南段也形成了一次范围广泛的区域变质作用。张祖还等(1984)用Rb-Sr法在摩天岭岩体和本洞岩体中获得了374~384Ma的变质年龄;云英岩化花岗岩中也存在着234.2±2.0Ma~306.7±7.1Ma的热液活动事件 (余中美, 2012)。显然,热液活动或成矿时间基本对应于韧性剪切作用时间,但稍有滞后(~10Ma)(图7a),可能是由于氦同位素体系受到破坏,造成热液锆石年龄偏低(Zhaoetal., 2004; Hoskin, 2005)。整体上看,摩天岭构造穹窿伸展型韧性剪切年龄(363.0~425.7Ma)比铀成矿年龄(295~408Ma)略早一些(图7b),可能是由不同矿物之间的封闭温度差导致。一般黑云母40Ar/39Ar封闭温度变化于250~300℃;白云母/绢云母的封闭温度在325~420℃之间(Harrisonetal., 2009; Bernetetal., 2019),一般在300~350℃(McDougall and Harrison, 1999)。而沥青铀矿的结晶温度一般200~250℃之间,包裹体测温表明摩天岭地区铀矿床成矿温度为205~222℃(Qiuetal., 2018),显然要比上述同构造云母Ar-Ar封闭温度低。但值得注意的是,封闭温度是一个温度变化带,云母类矿物的Ar-Ar同位素封闭温度与矿物的结晶速度、结晶程度及结晶环境等物理化学条件有关(Harrisonetal., 2009)。对于摩天岭铀矿床的SE倾向矿体的成矿年龄,376矿床沥青铀矿为295~408Ma;374矿床下部SE倾向沥青铀矿年龄与376矿床的矿体年龄一致。成矿年龄跨度约110Myr,反映了脆韧性转换带位置的多阶段活动或局部成矿时间的不均一性,因此有足够的时间在构造转换带内完成铀的富集沉淀成矿。

综上表明,成矿事件与NW倾的韧性转换带具有密切的成因联系。向NW和SE倾的正向滑动韧性剪切作用可能为同一期次的韧性剪切带,形成共轭型韧性剪切带(Ramsay and Huber, 1987)。因此,虽然尚未有SE倾向糜棱岩化岩石样品的直接测年数据,但有理由推测正向滑动的SE倾向糜棱岩带与NW倾向糜棱岩带在形成时间上具有一致性。此次构造运动代表了造山事件之后的构造反转,使得岩体及围岩中的铀再次产生活化;在伸展构造背景产生了正向剪切的糜棱岩,同时在深部流体及热液的共同作用下,约在400Ma,研究区开始产生了时间跨度达110Myr的多阶段铀成矿作用。

4.1.2 燕山晚期-喜马拉雅期伸展构造事件(D4)

随着燕山晚期-喜马拉雅运动的发展,在桂北地区形成了多条NNE向的脆性断裂,这些断裂的形成沟通了深部成矿物质和流体,导致了又一次范围广泛的铀成矿作用。

华南燕山晚期-喜马拉雅期的花岗岩型铀成矿作用具有多期次的特点,其主要成矿时间分布在约87Ma、67Ma和48Ma三个阶段(王联魁和刘铁庚, 1987; Huetal., 2008; 黄国龙等, 2010)。尽管只有4颗热液锆石的记录,余中美(2012)获得了85Ma三防岩体内云英岩化作用时间,表明此构造事件中的构造蚀变作用(图7)。374矿床SE倾向产于下部剪切带内矿体形成较早,U-Pb定年表明成矿年龄为374Ma、329Ma、304Ma和295Ma(张祖还等, 1984; Qiuetal., 2015);而上部NW倾向的矿体切割SE倾向的矿体,表明上部矿体形成较晚。据沥青铀矿U-Pb年龄测定,374矿床上部矿体成矿年龄为47±5Ma(郑大瑜和郑懋公, 1981; 赖伏良, 1982; 薛宝庆, 1988; Huetal., 2008)。NW倾的正向韧性剪切带持续发展,形成了一系列平行排列的NW倾向的正向剪切带,构成了位于376矿床和374矿床之间的较宽的构造破碎带。位于该正向剪切带上盘的376矿床产于NW倾向的劈理带中,在该期华南总体伸展的构造背景下,大量深部流体上涌,构造破碎带内岩石发生了强烈的蚀变,早期NW倾矿体经历了强烈的改造而形成新矿体(47Ma)。白垩纪-古近纪伸展构造为脆性破碎带,深部热液与大气降水混合参与成矿,可能与华南地区该期统一的伸展盆地与变质核杂岩的形成密切相关(Huetal., 2008; Qiuetal., 2018)。

4.2 376与374铀矿床的成矿构造控制与叠加改造

376矿床的矿体具有明显的组合构造形态特征(图3a, b),主要表现为矿体呈雁列式,既具有右列式排列特征,也具有左列式排列,两个雁裂带共同组褶皱转拆端的形态样轴面排列。褶皱轴面平行控矿断层面,即与断层面产状基本一致,表明这是个沿构造带发育的顺层掩卧褶皱,其不对称形态指示的构造运动学方向为SE的正向剪切。主要矿体分布在花岗岩体内带NE向F1、F12断裂中。根据钻孔及野外观察,虽然这些断裂带中主要发育密集的节理或间隔劈理,但这些劈理或者节理总体向西倾斜,与矿体产状并不一致;相反,与断裂带近于平行分布的碎裂带直接控制矿体分布,矿体规模较小,平面上呈斜列式展布,剖面上呈串珠状雁行排列,它控制了矿体具体位置、形态及规模。以1号矿带为例,其矿体在平面上的投影大体上表现为一个右列带与左列带的组合,并且与剖面上的组合形态一致,其下端包络线组成一个轴面与F1断层平行,但枢纽向SW侧伏的倒转倾伏向斜形态(图8a, b),这个褶皱形态在12号矿带中表现得更加明显,形成一个十分紧闭的向斜构造形态(图8c, d)。绿泥石化被SE倾的脆韧性剪切带控制(图3d),褶皱倒向以及雁列带指向的断层构造运动学也均为指向SE的左行正断层(图4)。

图8 摩天岭穹窿376铀矿床矿体空间关系及赤平投影图(下半球等面积投影)Fig.8 Spatial relationship and stereographic projection of No.376 uranium ore bodies (lower hemisphere equal area projection) in Motianling dome

374铀矿床的矿体单矿体规模均较小,但矿体分布具有明显规律性。以4号勘探线为例,在F10、F11和F12断裂带的正扇形夹持部位,矿体组成一个轴面向SE倾斜并与断层平行的倒转同斜背斜转折端形态(图3d、图8d),其形态组合特征与376铀矿床非常相似。F10、F11和F12断裂带及其控制的矿体均被其上部Fw、F1和F2断层及其控制的矿体切割,并且为374铀矿床主要的成矿构造蚀变所改造,表明374铀矿床具有两期成矿特征,即早期成矿是与376铀矿床一致,后期则为374铀矿床成矿阶段。其中早期成矿矿体均倾向SE,而后期成矿由倾向NW,与区域性韧性-脆韧性变形过程的指向是一致的。

华南花岗岩普遍较高的铀含量表明,锆石内的铀含量则往往能反映铀的富集程度,并由此造成了摩天岭矿区锆石中的铀富集(Qiuetal., 2018)。研究区地温梯度局部异常引起了沿剪切带下渗的大气降水升温折返,通过水岩反应而将成矿元素活化并随流体迁移运输至合适成矿的温度带,即脆韧性转换带。这些代表不同构造层次变形产物的构造岩具有完全相同的构造运动学,实际上为韧性剪切带正向递进剪切作用的结果,属于同期不同阶段递进变形的产物。对比桂北苗儿山沙子江和向阳坪铀矿床(李妩巍等, 2010; 王正庆等, 2018)和粤北下庄铀矿田(梁良和钟芝筠, 1985; 梁良等, 2019),铀矿化与糜棱岩和碎裂岩共生的现象即反映了脆韧性转换带的位置。

图9 摩天岭构造穹隆铀矿床综合成矿模式图DUC=韧性变形;BDT=脆韧性转换带;Pt3SB=新元古界四堡群;Pt3DZ=新元古界丹洲群;Nh-Z=新元古界南华系-震旦系Fig.9 Synthesized model showing the uranium metallogenesis of the Motianling tectonic domeDUC=ductile deformation; BDT=brittle-ductile transion zone; Pt3SB=Sibao Group of Neoproterozoic; Pt3DZ=Danzhou Group of Neoproterozoic; Nh-Z=Nanhuan System-Sinian Group of Neoproterozoic

韧性剪切带向脆性剪切带的转换代表了加里东造山带的伸展垮塌阶段(张桂林等, 2002)。反映石英位错蠕变导致的细粒化,岩石中还有少量不易塑性变形的矿物残斑,如石英发育波状消光,糜棱岩中石英常被拉长,石英亚颗粒及新生重结晶颗粒(图5)。脆韧性转换带是指岩石由塑性变形到脆性变形转变的地带,兼具两端元变形域的特征(Ramsay and Huber, 1987; Scholz, 1988; 李妩巍等, 2011)。研究表明,与剪切带相关的矿床大多发生在脆韧性环境(方适宜, 1990; 陈跃辉, 1994; Lietal., 2002; Yanetal., 2003b, c; Weinbergetal., 2005; 李妩巍, 2016),在摩天岭地区表现为下盘为地壳中深层次糜棱岩带,上盘为浅层次脆性构造角砾岩带,并广泛发育一系列构造面理(劈理和节理)。因此,脆韧性剪切带是一种重要的容矿构造。如374矿床容矿构造为乌指山断裂上盘脆性破碎带,下盘为正向韧性剪切带。显然,这种脆韧性转换环境有利于成矿流体的汇聚与成矿元素沉淀。然而,对于单一期次的成矿过程而言,这一转换带在断裂上、下盘岩石中的位置并不是一成不变的(陈跃辉等, 1997),会随着伸展断裂带下盘岩块的不断隆升和上盘岩块的沉降而在不同阶段有所迁移(图9)。矿体是成矿作用进行过程的产物(薛宝庆, 1988),转换带不同的界面深度反映了不同阶段与不同程度的成矿作用(图9)。矿床构造解析表明,376矿床与374矿床中均发育SE倾的矿脉,原本为同期构造(图9b),正是后期西倾的正断层将两个矿床错断隔离(图9c)。因此,该断层同属376矿床的下方和374矿床的上方,造成374矿床顶端矿体NW倾、而下部矿体SE倾。

大量研究表明,三防岩体为新元古代花岗岩,晚古生代没有叠加的岩浆活动。花岗质或长英质岩石的韧性剪切变形深度一般大于10km,温度大于 300~450℃;脆-韧性转换带在地壳中的深度为约10~15km(Ramsay, 1980; 郑亚东和常志忠, 1985)。而地壳中的岩石如镁铁质岩、碎屑岩等岩石,由于岩石的物理性质差异导致发生脆-韧性变形的机制及深度与长英质或花岗质岩石不一致(张雪锋, 2015),这一变形界面也并不一定在均一深度上分布。如东侧相邻的四堡韧性剪切带以浅变质碎屑岩为主,发生于393~419Ma,变形温度在250~300℃之间,属地壳浅部低温低压下的韧性剪切带(张雪锋, 2015)。摩天岭铀矿床的脆韧性剪切变形年代和温度与铀成矿时代和温度均具有一定的重叠性,但明显铀成矿滞后(图7),表明脆韧性变形控制了铀矿床的递进发育过程。同为中低温热液矿床,华南粤北下庄花岗岩型铀矿床成矿温度在180~338℃,大部分集中在200~250℃(金景福和胡瑞忠, 1990)。与之类似,同成矿期石英的流体包裹体研究表明,摩天岭铀矿床成矿温度在175~268℃之间(Qiuetal., 2018)。因此,当岩石历经脆韧性转换带的位置时,与铀矿床的成矿温度可以达到一致,并开始成矿。脆韧性转换带界面位于韧性剪切带与脆性变形带之间,是温度稍低的脆-韧性剪切变形控矿而非韧性剪切带控矿。

通过对矿床构造解析,认为376矿床与374矿床中均发育SE倾的矿脉,原本为同期构造(图9b),正是后期西倾的正断层将两个矿床错断隔离(图9c)。因此,该断层切割改造了374矿床的上部位置,造成374矿床顶端NW倾、而下部SE倾。而该断层延伸至376矿床附近,深度更深。这将有两种可能:1)控矿断裂位于氧化还原界面以下而不成矿,而376矿床成矿流体运移至氧化还原带时,已经到了376矿床的上部位置(图8c中流体箭头顶端位置),该位置未被该正断层切割;2)控矿断裂在深部,376矿床矿体东侧的延伸方向上,如果SE倾向与NW倾向断层交点位于脆韧性转换带界面,这将可能提供重要的成矿潜力,但需要后续更深的钻孔来验证。

4.3 摩天岭铀矿床成矿构造模式

前人研究指出构造角砾岩带在花岗岩内铀矿床成矿作用具有重要作用(Lietal., 2002)。脆韧性转换带为构造破碎带,广泛发育构造角砾岩,这为地下水下渗提供了可能。对摩天岭穹窿而言,在376矿床成矿前氧同位素的δ18O值为-6.3‰~12.0‰,同成矿期的石英的δ18O值为-1.4‰~11.9‰,成矿后δ18O值为9.0‰~11.4‰;374矿床成矿前-4.9‰~13.6‰和成矿期-6.0‰~-5.2‰的黄铁矿δ34S值。以上数据表明成矿流体中有大气降水的重要参与(祁家明等, 2013),或大气降水与深部于花岗岩有关热液的混合流体(张祖还等, 1984; 陈小东等, 2002; 梁国宝, 2008; Qiuetal., 2018),反映了脆韧性剪切带导致的相对开放的空间系统。舒孝敬等(2012)认为由断裂控制的低地形区既是大气降水主要汇集区,也是主要的铀成矿区。地表富含CO32-的大气降水,在向下运移过程中,萃取了岩石中的铀,富含F-和Cl-等离子的深源流体向上迁移,萃取了地层或岩体中的铀,构造破碎带的发育造成其附近的温度压力等物理化学条件发生变化导致铀元素的富集沉淀(胡瑞忠和金景福, 1990)。上述研究表明构造破碎带与混合流体是成矿空间和成矿流体来源。

热液流体中的挥发份和富铁质成分可能为摩天岭地区铀成矿作用提供重要的还原剂。Qiuetal. (2018)通过矿床地球化学研究,认为粗粒糜棱花岗岩可能发生了重结晶,进而使含F、Cl和CO2的挥发份卷入了深源热液流体,这些挥发份是一种重要的地球化学还原障(胡瑞忠和金景福, 1990; 李延河等, 2016)。邹明亮等(2011)根据微量元素对比研究认为,摩天岭铀矿床的形成与铁质的富集有关。磁黄铁矿等磁性矿物可促进热液中高价铀(U6+)的还原,并分别被氧化成黄铁矿(舒孝敬等, 2012),摩天岭矿床中沥青铀矿和胶状黄铁矿密切共生即是直观的证据。

华南低温热液铀矿床的形成温度通常大于150℃且与大气降水有关(金景福和胡瑞忠, 1990; Minetal., 1999),成矿元素及Pb同位素地球化学分析结果表明成矿流体中的铀主要来源于富铀的地壳岩石(王联魁和刘铁庚, 1987; 卢武长和王玉生, 1990; Minetal., 1999)。三防花岗岩体和四堡群围岩的铀含量较高(图2b);水岩反应实验表明摩天岭花岗岩铀的浸出率达到20%~60%(徐争启等, 2014);四堡群变质岩铀浸出率比花岗岩更高(41.9%)(舒孝敬等, 2012)。三防花岗岩体发育绿泥石化蚀变带和硅质蚀变带(图3、图6a, b),376和374矿区外围的四堡群发育硅化带(图6e),374矿床西侧残存沉积变质岩—云母石英片岩残留体呈不规则弧形与Fw形成圈闭区,矿床赋存于圈闭区内。以上表明大气降水萃取了地表花岗岩和四堡群中的铀,深部上升的含CO2、S和F等的酸性热液使围岩蚀变成为含铀热液(舒孝敬等, 2012),两者混合流体共同造成铀元素的活化、迁移和富集成矿。

尽管摩天岭穹隆铀矿床存在几个明显不同的成矿时期,但各成矿阶段的构造控制具有统一的成因和规律,即摩天岭穹隆铀矿床中矿体及蚀变带的产状主要由脆韧性剪切带控制。脆韧性剪切带的发育是控制铀元素富集和矿床分布的关键因素之一,在其正向拆离过程中,先在中下地壳层次形成韧性剪切带并通过核部杂岩体的递进上隆而逐渐抬升。当抬升至浅地壳层次时,花岗质糜棱岩进入脆韧性变形域(Ramsay and Huber, 1987),将形成一个原始近水平的与韧性拆离带小角度相交的脆韧性面(图9b, c)。在拆离构造带内,由于这个面在构造上是脆韧性变形过渡带,因此也是深层热液流体向上运移并与浅层流体发生混合的位置。早期SE倾韧性剪切带为挤压逆冲性质,此时并未成矿(图9b);随后构造体制转换为伸展型而发育的NW倾剪切带将原先的剪切带错断,并一同进入脆韧性转换带从而成矿(图9c);较早期形成的糜棱岩随着递进变形,形成构造运动学基本一致的粗糜棱岩-碎裂岩系列岩石,从而造成糜棱岩被“后期碎裂岩叠加”的假象,而形成复合型矿床(图9d)。

前人研究成果表明,铀矿的形成实际上处于一个地球化学转变带,即氧化还原过渡带,此带内含矿流体减压降温、冷却结晶(《黄世杰铀金地质论文集》编委会, 2012)。铀是变价元素,在氧化环境中呈氧化态六价铀存在,主要以碳酸铀酰/氟化铀酰络合物形式在热水溶液中迁移(Huetal., 1993; 李延河等, 2016; 刘正义等, 2011);在还原条件下则以还原态四价铀存在,主要以沥青铀矿和铀石等形式富集沉淀(薛宝庆, 1988; 《黄世杰铀金地质论文集》编委会, 2012; Qiuetal., 2018),垂向上表现为“上部氧化,下部还原”。因此富铀岩石中的铀部分被氧化形成U6+,溶解进入水溶液迁移,部分U4+入溶液主要和F-等阴离子形成络合物当遇到还原障而被还原成四价铀沉淀、富集形成铀矿(图9)。由于这个带是递进变化的,即韧性剪切带下盘递进上升,可以不断提供新的含铀围岩,从而造成铀矿化的富集和新矿体的形成,并将已经形成的铀矿体赋存于拆离构造带中。

上述围岩-蚀变-矿体(化)时空关系表明,摩天岭地区铀成矿构造模式主体为一个脆韧性条件下的正向剪切断层体系。在NW-SE向区域伸展和隆升条件下,深部上升的活性流体以铀络合物形式从围岩母花岗岩中浸染出铀元素,运移至脆韧性转换带或者氧化-还原过渡界面,富集沉淀铀矿物并形成富矿体。因此,摩天岭铀矿床的成矿模型,可应用于解释桂北乃至整个华南地区与花岗岩有关的中低温热液铀矿的成因,对华南铀矿勘查具有指导作用。

5 结论

通过上述研究,获得的主要结论如下:

(1)摩天岭构造穹隆主要经历了早期挤压型韧性剪切作用,晚期构造反转、脆韧性变形及后期脆性变形与隆升剥露的构造演化过程。分别为新元古代(~820Ma)(D1期)近东西向褶皱与同构造岩浆侵位、加里东期顶部向NW的逆冲(453~426Ma)(D2期)、后加里东期NE走向的正向韧性剪切(426~295Ma)(D3期)、燕山晚期-喜马拉雅期的脆-韧性伸展(87~47Ma)(D4期)及喜马拉雅期以来的构造隆升与剥蚀(47Ma~至今)(D5期);结合背散射电子(BSE)图像与电子探针(EPMA)分析,认为D3期和D4期为关键铀成矿期。

(2)野外构造解析及显微构造分析表明,三防花岗岩体广泛发育韧性糜棱岩化S-C构造面理与脆性碎裂岩化共生。结合电子探针(EPMA)分析表明,糜棱岩化三防花岗岩体发生铀成矿作用,并伴生绿泥石化蚀变作用。

(3)提出了摩天岭两种类型铀矿床主体由脆韧性剪切带控制的、多构造和蚀变因素复合作用下的铀成矿模式。376铀矿床由向SE倾斜的脆韧性变形带控制铀矿化的富集;374铀矿床是一个复合矿床,包括早期与376铀矿床同期的成矿作用和后期脆性破碎带控制的铀矿化作用。两期成矿构造分别形成于加里东后期及白垩纪-古近纪,均为华南重要的区域性伸展构造阶段。

致谢在论文写作过程中与核工业北京地质研究院刘红旭博士进行了有益的讨论;两位审稿人对本文提出的一系列建设性修改意见,提高了文章质量;本科生孙文礼参加了部分野外和室内工作。在此一并致以真挚的谢意!

猜你喜欢

糜棱岩铀矿床韧性
强化粮食供应链韧性
浅谈三维地质建模对找矿预测的指导意义
——以广东河台金矿田外围找矿为例
粤西河台金矿成矿构造系统简析
诸广山岩体南部长排地区铀矿床铀镭平衡特征研究
大兴安岭南段红山子铀矿床地球物理特征及找矿预测
房地产市场韧性犹存
粤北花岗岩型铀矿矿集区糜棱岩带特征及其与铀成矿的关系
韧性,让成长更美好
探讨变质核杂岩与成矿作用的关系
笑中带泪的韧性成长