APP下载

脂肪来源干细胞骨修复研究进展

2019-10-09赵道印宁旭汪健

中国医药导报 2019年20期

赵道印 宁旭 汪健

[摘要] 骨组织工程包括三个主要的因素,即用于成骨的干细胞、用于骨诱导的生长因子和用于骨传导的可降解生物支架。间充质干细胞在修复骨缺损方面已经取得了显著的成功,并且他们的安全性在一些临床前实验中也得到证实。脂肪来源间充质干细胞(ADSCs)可分化为成骨细胞、软骨细胞和脂肪细胞,且与骨髓间充质干细胞(BMSCs)具有相似的分化潜能,且获取方式微创,同时产量也比BMSCs多,具有广泛的临床应用前景。

[关键词] 骨组织工程;脂肪来源干细胞;骨修复

[中图分类号] R329.2          [文献标识码] A          [文章编号] 1673-7210(2019)07(b)-0049-04

Research advances of adipose-derived stem cells on bone repair

ZHAO Daoyin1   NING Xu2   WANG Jian2

1.Guizhou Medical University, Guizhou Province, Guiyang   550004, China; 2.Department of Orthopedics, the Affiliated Hospital of Guizhou Medical University, Guizhou Province, Guiyang   550004, China

[Abstract] Bone tissue engineering consists of three main factors: stem cells for osteogenesis, growth factors for bone induction and biodegradable scaffolds for bone conduction. Mesenchymal stem cells have achieved significant success in repairing bone defects, and their safety has been demonstrated in a number of preclinical trials. Adipose-derived stem cell (ADSCs) can also differentiate into osteoblasts, chondrocytes, myocytes and adipocytes, and they have similar differentiation potential to BMSCs with a minimally invasive approach. Meanwhile, their yield is also higher than BMSCs, which has a broad clinical application prospect.

[Key words] Bone tissue engineering; Adipose-derived stem cells; Bone repair

骨組织工程包括干细胞、生长因子和生物支架。间充质干细胞(MSCs)首先从骨髓中分离出来,能够向成骨、软骨和脂肪分化,脂肪组织、结缔组织、滑液、脐带、羊水和胎盘等组织中也可分离出MSCs,并证实有多向分化潜能[1-2]。MSCs可分为骨髓MSCs(BMSCs)、脂肪来源MSCs(ADSCs)、血管周围干细胞(PSCs)、诱导多能干细胞(iPSCs)。其中BMSCs为骨组织工程中最常用的种子细胞,但存在获取有创、产量低、供区感染等不足,限制了其临床应用[3]。ADSCs与BMSCs具有相似的多向分化潜能,其获取微创,同时产量也较BMSCs多[4],具有更为广泛的临床应用前景。

1 ADSCs的成骨分化潜能

骨再生方案的细胞疗法中,ADSCs是最有前景的干细胞之一,体内外实验均证实了ADSCs能够分化为成熟的成骨细胞,且可通过旁分泌效应来促进自体前体细胞的迁移和分化来促进新生骨形成。常用的体外成骨诱导剂有地塞米松、抗坏血酸、β-甘油磷酸钠,其中抗坏血酸和地塞米松的浓度可以影响ADSCs成骨效果[5-6]。

ADSCs可以分泌一些生物活性分子,通过旁分泌功能,为组织修复建立良好的微环境,从而促进新生血管形成和伤口愈合,同时可以减少组织的炎性反应[7];ADSCs也可分泌促进血管生成和抗凋亡潜能的生长因子,如转化生长因子(TGF)、胰岛素样生长因子(IGF)、血管内皮生长因子(VEGF)和肝细胞生长因子(HGF)[8]。骨形态发生蛋白(BMP)是TGF-β超家族的一员,为一种有效的骨诱导分子,其中BMP-2、BMP-4、BMP-6、BMP-7、BMP-9已被证实拥有成骨能力[9],联合应用ADSCs和BMP-2,可明显诱导新骨形成[6]。VEGF被认为是血管生成的主要调节剂,可以通过募集干细胞、增强内皮细胞的存活和分化,诱导新的毛细血管网络的形成,从而促进组织再生[9],它们的联合可进一步增强脂肪干细胞的迁移、黏附和增殖能力[10]。

2 与富含血小板血浆(PRP)联合应用

PRP是各种生长因子和细胞因子的天然组合,由自体血分离而来,制备简单,而且避免了传染性疾病和免疫相关疾病的风险,包含PDGF、TGF、IGF、VEGF和HGF,可促进内皮细胞增殖和迁移、促进血管生成和骨再生[11]。他们可通过与MSCs、成纤维细胞、成骨细胞和内皮细胞上的受体结合,从而对组织修复发挥作用[12]。PRP预处理的ADSCs具有内皮细胞特性,可显著促进新生血管形成[13],与脂肪干细胞联合可有效的促进脂肪干细胞的增殖和成骨分化[14],促进骨组织再生[15],PRP的制备方法会影响ADSCs的增殖、分化等生物学效果[16]。

3 细胞共培养

诱导后的脂肪干细胞与其他间充质干细胞共培养时可以提高其成骨能力,且不同的间充质干细胞对其成骨能力影响的效果也不同[17]。BMSC与ADSC共培养时较单一培养成骨能力强[18],能促进骨再生和血管形成[19]。ADSCs与内皮细胞共培养同样可以增加成骨能力[20]。ADSCs的共培养为骨组织工程提供了有效的方法。

4 ADSCs与支架复合体内移植

支架为骨组织形成提供骨传导空间,接种种子细胞,人工合成的支架应该模拟正常骨组织的形态和结构,优化与周围组织整合率,并为干细胞的黏附和增值提供良好的微环境。

4.1 羟基磷灰石(HA)

HA与天然骨中无机盐成分很接近,具有良好的生物活性、骨传导性,能为新生骨组织提供基础离子,但脆性较大、骨诱导活性较低且降解时间长等,因此HA常与其他材料联合使用来提高复合材料的机械性,骨传导性,生物降解性及生物活性等综合性能[21-22]。HA支架与ADSCs的联合可以增加HA的吸收,且新生骨更加成熟更加类似于天然骨[23]。

4.2 Beta-磷酸三钙(β-TCP)

β-TCP的成分与骨基质的无机成分相似,降解释放的钙和磷有助于新骨形成。ADSCs联合β-TCP可以促进骨形成,增加骨修复的效果,且没有明显并发症[24]。双相磷酸钙(BCP)是HA和β-TCP的混合物,两者的联合优化材料的性能,还可以通过调整两者的比例来控制材料的成骨、降解等性能,从而达到更好地修复骨缺损的目的,如BCP20/80的成骨及血管分化潜能较BCP60/40有所提高[25]。王腾飞等[26]制备的HA/β-TCA复合物支架,具有较好的生物相容性、降解性、骨传导性和良好的孔隙率,利于ADSCs与材料复合,能明显促进骨缺损的修复,甚至,ADSCs联合HA/β-TCP修复骨缺损能力要优于ADSCs/同种异体骨[27]。

4.3 高分子材料

高分子材料具有良好的生物降解性、生物相容性、孔隙率及孔径且无毒,能够被塑造为三维支架,利于脂肪干细胞生长增殖,促进血管和骨组织的生成,加快骨愈合,唐星宇等[28]制备的ADSCs/聚乳酸共聚物,能增加骨密度,促进新骨形成及骨愈合,效果要优于ADSCs组。聚乳酸/聚羟基乙酸共聚物(PLGA)具有优良的生物相容性及力学特性,且来源广泛,获取容易,无明显毒性及免疫原性,使其成为理想的骨支架材料。

4.4 3D打印支架

3D打印技术在医学领域得到广泛应用,3D打印支架可以促进ADSCs的成骨分化[29],Lee等[30]通过3D打印技術,制备了聚乳酸-羟基乙酸共聚物(PLGA)支架,然后将ADSCs接种于该支架上修复大鼠下颌骨缺损,12周后发现骨缺损处愈合。宋杨等[31]将ADSCs加入海藻酸钠和明胶混合物中,利用3D生物打印技术,构建细胞-海藻酸钠-明胶共混物打印体,经检测打印体中细胞存活率达到89%左右,且可体内成骨;Kang等[32]将ADSCs与聚己内酯/磷酸三钙共打印用于骨缺损处,取得了良好的骨整合和修复。

5 ADSCs的临床应用:

ADSCs临床应用取得一定效果,Lendechel等[33]用自体ADSCs联合髂骨及支架治疗了一名创伤性颅骨缺损的7岁女孩,术后3个月显示新骨形成和接近连续的骨再生。S?觃ndor等[34]用ADSCs对下颌骨缺损进行了成功的重建。骨肿瘤患者切除术后导致的骨缺损或者骨不连[35],同样可以使用ADSCs联合支架进行重建,Mesim?覿ki等[36]用自体ADSCs与重组人BMP-2和β-TCP颗粒组合治疗成人患者良性肿瘤切除术引起的上颌骨缺损,在手术重建缺损4个月后,得到了成熟的血管化骨,具有良好的整合性和稳定性。郭恩琪等[37]用ADSCs成功完成了9例创伤性骨皮肤复合组织缺损的骨修复,包括颅骨、桡骨、肱骨及胫骨,分两期修复,9例骨缺损患者均取得了有效的骨再生,为复合组织损伤合并大块骨缺损的患者提供了新的治疗方法。

6 小结

骨组织工程中ADSCs是最有前景干细胞之一,基于ADSCs的骨再生有很多优势,为了确保成功的临床应用,需要进一步发展微创的分离方法和手术过程。细胞联合支架可以更好地促进血管和骨再生,为了取得更好的临床效果,发展具有骨诱导及骨传导特性的生物支架联合干细胞及生物活性因子的复合体显得尤为重要。ADSCs在临床应用上取得的成功为骨修复提供了一种有前景的治疗方法,但仍需大量的临床前期研究来进一步证实其安全性和有效性。

[参考文献]

[1]  Park JS,Suryaprakash S,Lao YH,et al. Engineering mesenchymal stem cells for regenerative medicine and drug delivery [J]. Methods,2015,84:3-16.

[2]  Bajek A,Olkowska J,Gurtowska N,et al. Human amniotic-fluid-derived stem cells: a unique source for regenerative medicine [J]. Expert Opin Biol Ther,2014,14(6):831-839.

[3]  Hernigou P,Trousselier M,Roubineau F,et al. Stem Cell Therapy for the Treatment of Hip Osteonecrosis: A 30-Year Review of Progress [J]. Clin Orthop Surg,2016,8(1):1-8.

[4]  Li Q,Wang T,Zhang GF,et al. A comparative evaluation of the mechanical properties of two calcium phosphate/collagen composite materials and their osteogenic effects on adipose-derived stem cells [J]. Stem Cells Int,2016, 2016:1-12.

[5]  de Girolamo L,Sartori MF,Albisetti W,et al. Osteogenic differentiation of human adipose-derived stem cells:comparison of two different inductive media [J]. J Tissue Eng Regen Med,2007,1(2):154-157.

[6]  Wang ZL,He RZ,Tu B,et al. Drilling combined with adipose-derived stem cells and bone morphogenetic protein-2 to treat femoral head epiphyseal Necrosis in Juvenile rabbits [J]. Curr Med Sci,2018,38(2):277-288.

[7]  Zhu Z,Yuan Z,Huang C,et al. Pre-culture of adipose-derived stem cells and heterologous acellular dermal matrix: paracrine functions promote post-implantation neovascularization and attenuate inflammatory response [J]. Biomed Mater,2019,14(3):035002.

[8]  Tajima S,Tobita M,Orbay H,et al. Direct and indirect effects of a combination of adipose-derived stem cells and platelet-rich plasma on bone regeneration [J]. Tissue Eng (Part A),2015,21(5/6):895-905.

[9]  Li B,Wang H,Qiu G,et al. Synergistic effects of vascular endothelial growth factor on bone morphogenetic proteins induced bone formation in vivo:influencing factors and future research directions [J]. Biomed Res Int,2016,2016:2869572.

[10]  高潔,王明国,杨帅,等.不同生长因子对脂肪干细胞生物学行为的影响[J].中国组织工程研究,2015,19(19): 3010-3016.

[11]  Wen YH,Lin WY,Lin CJ,et al. Sustained or higher levels of growth factors in platelet-rich plasma during 7-day storage [J]. Clin Chim Acta,2018,483:89-93.

[12]  Dhurat R,Sukesh M. Principles and methods of preparation of platelet-rich plasma: a review and author′s perspective [J]. J Cutan Aesthet Surg,2014,7(4):189-197.

[13]  Chen CF,Liao HT. Platelet-rich plasma enhances adipose-derived stem cell-mediated angiogenesis in a mouse ischemic hindlimb model [J]. World J Stem Cells,2018,10(12):212-227.

[14]  Cvetkovi VJ,Najdanovi JG,Vukeli-Nikoli M,et al. Osteogenic potential of in vitro osteo-induced adipose-derived mesenchymal stem cells combined with platelet-rich plasma in an ectopic model [J]. Int Orthop,2015,39(11):2173-2180.

[15]  Shafieian R,Matin MM,Rahpeyma A,et al. Effects of human adipose-derived stem cells and platelet-rich plasma on healing response of canine alveolar surgical bone defects [J]. Arch Bone Jt Surg,2017,5(6): 406-418.

[16]  胡育瑄,何家才.不同方法制备富血小板血浆对兔脂肪干细胞增殖和成骨分化能力的影响[J].安徽医科大学学报,2018,53(8):1184-1190.

[17]  孙仕晨,董腾哲,黄昕,等.Transwell共培养条件下诱导脂肪干细胞成骨能力的改变[J].中国组织工程研究,2016, 20(28):4155-4161.

[18]  杨民,郑伟伟,林程.骨髓间质干细胞和脂肪间质干细胞混合培养后的成骨能力[J].中华骨科杂志,2016,36(23):1524-1532.

[19]  Kang ML,Kim JE,Im GI. Vascular endothelial growth factor-transfected adipose-derived stromal cells enhance bone regeneration and neovascularization from bone marrow stromal cells [J]. J Tissue Eng Regen Med,2017,11(12):3337-3348.

[20]  Zhao X,Liu L,Wang FK,et al. Coculture of vascular endothelial cells and adipose-derived stem cells as a source for bone engineering [J]. Ann Plast Surg,2012,69(1):91-98.

[21]  Souza DC,Abreu HLV,Oliveira PV,et al. A fast degrading PLLA composite with a high content of functionalized octacalcium phosphate mineral phase induces stem cells differentiation [J]. J Mech Behav Biomed Mater,2019, 93:93-104.

[22]  Fang J,Li P,Lu X,et al. A strong,tough,and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration [J]. Acta Biomater,2019,88:503-513.

[23]  de Girolamo L,Arrigoni E,Stanco D,et al. Role of autologous rabbit adipose-derived stem cells in the early phases of the repairing process of critical bone defects [J]. J Orthop Res,2011,29(1):100-108.

[24]  Thesleff T,Lehtimki K,Niskakangas T,et al. Cranioplasty with adipose-derived stem cells and biomaterial: a novel method for cranial reconstruction [J]. Neurosurgery,2011, 68(6):1535-1540.

[25]  Van Esterik FA,Zandieh-Doulabi B,Kleverlaan CJ,et al. Enhanced osteogenic and vasculogenic differentiation potential of human adipose stem cells on biphasic calcium phosphate scaffolds in fibrin gels [J]. Stem Cells Int,2016,2016:1934270.

[26]  王腾飞,宋兴华,麦麦提艾力·阿不力克木,等.脂肪干细胞与羟基磷灰石/β-磷酸三钙复合体修復兔椎体缺损[J].中国组织工程研究,2018,22(13):2081-2086.

[27]  龙志成,宋兴华,龙仕杰,等.脂肪干细胞复合HA/β-TCP与同种异体骨修复兔脊柱骨缺损的比较[J].中国矫形外科杂志,2018,26(2):164-169.

[28]  唐宇星,赵庆,杨中萌,等.聚乳酸共聚物复合脂肪干细胞对骨质疏松性骨折愈后生物力学的影响[J].中国组织工程研究,2017,21(10):1577-1582.

[29]  Park H,Kim JS,Oh EJ,et al. Effects of three-dimensionally printed polycaprolactone/β-tricalcium phosphate scaffold on osteogenic differentiation of adipose tissue- and bone marrow-derived stem cells[J].Arch Craniofac Surg,2018,19(3):181-189.

[30]  Lee MK,DeConde AS,Lee M,et al. Biomimetic scaffolds facilitate healing of critical-sized segmental mandibular defects [J]. Am J Otolaryngol,2015,36(1):1-6.

[31]  宋杨,王晓飞,王宇光,等.人脂肪间充质干细胞与生物材料共混物三维打印体的体内成骨[J].北京大学学报:医学版,2016,48(1):45-50.

[32]  Kang HW,Lee SJ,Ko IK,et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity [J]. Nat Biotechnol,2016,34(3):312-319.

[33]  Lendeckel S,Jdicke A,Christophis P,et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report [J]. J Craniomaxillofac Surg,2004,32(6):370-373.

[34]  Sándor GK,Tuovinen VJ,Wolff J,et al. Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration [J]. J Oral Maxillofac Surg,2013,71(5):938-950.

[35]  Dufrane D,Docquier PL,Delloye C,et al. Scaffold-free three-dimensional graft from autologous adipose-derived stem cells for large bone defect reconstruction: clinical proof of concept [J]. Medicine (Baltimore),2015,94(50):1-10.

[36]  Mesimki K,Lindroos B,Trnwall J,et al. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells [J]. Int J Oral Maxillofac Surg,2009, 38(3):201-209.

[37]  郭恩琪,謝庆平,朱孜冠,等.严重复合组织缺损皮瓣修复术后应用自体脂肪干细胞构建组织工程骨重建骨支架[J].中华显微外科杂志,2017,40(3):213-217.