APP下载

浅议高中数学基本解题方法

2019-09-25宋红霞

报刊精萃 2019年3期
关键词:数形题型定义

宋红霞

辽宁省葫芦岛市第一高级中学,辽宁葫芦岛 125001

数学思想方法与数学基础知识相比较,它有较高的地位和层次。高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。下面就数学思想方法进行分析,谈谈我的体会:

一、数形结合思想方法

数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其实质是将抽象的数学语言与直观的图像结合起来,数学中的知识,有的本身就可以看作是数形的结合。如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

二、分类讨论思想方法

在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。

引起分类讨论的原因主要是以下几个方面:

①问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a =0、a<0 三种情况。这种分类讨论题型可以称为概念型。

②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n 项和的公式,分q=1 和q ≠1 两种情况。这种分类讨论题型可以称为性质型。

③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2 时分a>0、a =0 和a<0 三种情况讨论。这称为含参型。

进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。

解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。

三、函数与方程的思想方法

函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。

四、等价转化思想方法

等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。

【注】 本题在用分析法证明数学问题的过程中,每一步实施的都是等价转化。此种题型属于分析证明型。

可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。

猜你喜欢

数形题型定义
离散型随机变量常考题型及解法
数形结合 相得益彰
常见数列创新题型归纳
巧妙构造函数 破解三类题型
严昊:不定义终点 一直在路上
定义“风格”
数形结合思想及其应用
数形结合思想及其应用
谈数形结合思想在高中数学中的应用
数形结合的实践探索