水稻产量性状基因克隆及应用研究进展
2019-09-20李世鹏李会云郭明欣赵旭升
李世鹏 李会云 郭明欣 赵旭升
摘要:水稻是中国重要的粮食作物之一,在人口飞速增长和耕地面积急剧下降的今天,通过遗传改良提升其产量和品质显得尤其重要。随着分子生物学和基因组学的发展,大量产量性状基因通过图位克隆和突变体筛选等方法得到克隆,产量形成分子调控逐步被解析,部分功能基因在育种中得到运用。对上述内容进行了综述,并对该领域的研究方向进行了展望。
关键词:水稻;产量;功能基因;分子育种
中图分类号:S511 文献标识码:A
文章编号:0439-8114(2019)16-0005-05
DOI:10.14088/j.cnki.issn0439-8114.2019.16.001 开放科学(资源服务)标识码(OSID):
水稻是世界上最重要的粮食作物之一。从2004年以来中国水稻的种植面积逐年增加,2017年中国水稻的种植面积达到了0.30亿hm2,在中国粮食生产中占有举足轻重的地位。水稻产量是由多因素决定的复杂形状,主要由三大主要因素构成,包括单株的穗数、每穗粒数和千粒重。穗数主要由植株的分蘖能力决定,穗数的多少主要由一级和二级分蘖数决定。每穗粒数则是由每穗颖花数和结实率决定的,其中每穗颖花数主要取决于一次枝梗和二次枝梗数。而分蘖和枝梗的发育形成均由顶端分生组织的活性决定。千粒重由粒型和灌浆率两个因素决定,其中粒型又由粒长、粒宽和粒厚三个因素决定。而这三个因素是通过细胞分裂、细胞扩增和极性分化来决定种子的最终性状[1-3]。
1 水稻穗数、每穗粒數相关基因克隆及调控机理
近些年来,通过图位克隆、突变体筛选和同源基因克隆的方法,多个控制水稻分蘖发育和枝梗发育的基因被克隆。随着越来越多控制水稻穗粒数的基因被克隆,水稻分蘖发育和分枝发育的调控路径逐渐清晰[4,5]。
1.1 水稻分蘖发育调控机理
目前已克隆的水稻分蘖发育相关基因主要包括调控分蘖的发生、形成以及叶原基形成间隔期三类基因。
MOC1、LAX1和LAX2基因调控水稻分蘖的发生。通过对水稻分蘖突变体的研究,克隆了一系列控制水稻分蘖的基因,如MOC1、D3、DWARF10、D17/HTD1等。MOC1是第一个在水稻中被克隆的控制水稻分蘖的基因。moc1突变体表现为没有任何分蘖,只有一个主茎且花序轴和小穗也明显减少。MOC1编码一个GRAS家族的转录因子正向调控叶腋分生组织分化和腋芽的形成,并且还促进腋芽的向外生长[6]。Tillering and Dwarf 1基因编码的蛋白质(TAD1)与APC/C、OsAPC10形成APC/CTAD1复合体,该复合体与靶基因MOC1结合从而降低MOC1蛋白质的活性。而Tiller enhancer基因编码的蛋白质(TE)与APC/C、OsCDC27形成APC/CTE,该复合体与靶基因MOC1结合通过泛素-26S蛋白酶体途径降解MOC1蛋白质,同时该复合体还抑制组织特征基因OSH1的表达[7,8]。lax1和lax2突变体具有相似的表型,即分蘖数明显减少,而二者均在叶腋分生组织中高表达。lax1、lax2双突变体比其单突变体分蘖数减少更为明显。spa单突变体分蘖数比其野生型没有明显下降,但lax1、spa双突变体几乎没有任何分蘖。上述研究表明,LAX1、LAX2和SPA正向调控水稻分蘖的发生,而三者属于同一调控路径[9,10]。
独脚金内酯(SLs)是植物生产的关键因子,控制次生茎的形成和调控根的分岔。拟南芥中MAX1、MAX3和MAX4是独脚金内酯合成过程中的重要参与酶,而MAX2参与感应独脚金内酯调控通路信号。水稻中的MAX2、MAX3和MAX4同源基因均已被分离,分别命名为D3、D17/HTD1和D10。D3编码产物与拟南芥MAX2/ORE9同源,含有F-box和富含亮氨酸重复等结构域[11]参与独脚金内酯通路信号的接收。D3蛋白质抑制水稻分蘖芽的活性,维持它们的休眠性。通过对叶绿素降解、细胞膜离子渗漏和衰老相关基因的表达量检测表明,D3蛋白质也参与黑暗诱导的植物叶片衰老过程和过氧化氢诱导的植物叶片细胞死亡过程[12]。D14编码一个酯酶,抑制水稻分枝的发生,其作为独脚金内酯的受体参与感应独脚金内酯通路信号[13]。而D27、D17/HTD1和D10参与独脚金内酯前体的合成过程调控分枝的发生[14,15]。D53负调控独脚金内酯合成信号通路。潜在的独脚金内酯受体D14和D3形成D14-D3复合体参与独脚金内酯通路信号,而D14-D3复合体通过调节D53的活性来调控独脚金内酯通路信号[16,17]。
PLA1编码一个细胞色素P450 CYP78A11,调节营养生长期叶片起始发育的速率。PLA1在发育中的叶原基中行使功能,影响叶片起始发育时间以及营养生长的终止,叶原基形成间隔期影响叶片的数目和分蘖数,从而影响穗数[18]。PLA2调节水稻叶片起始发育和叶片成熟[19]。PLA1和PLA2均作为GA信号转导的下游基因正向调控叶片的成熟[20]。IPA1编码一个含SBP-box的转录因子,由miRNA156调节参与调控多个生长发育过程[21,22]。全基因组染色质免疫共沉淀-测序分析表明,水稻茎尖和幼穗含有一系列IPA1互作蛋白质。IPA1蛋白质可以通过SBP-box结构域直接与受调控基因的核心基序GTAC相结合调控株型发育相关基因。IPA1与控制水稻分蘖侧芽生长的负调控因子OsTB1的启动子直接结合,抑制水稻分蘖发生,还通过直接正调控水稻株型重要基因DEP1调控水稻的株高和穗长。IPA1蛋白质也可以通过与TCP家族的转录因子PCF1和PCF2相互作用与TGGGCC/T基序间接相结合,调控一系列发育相关基因[23]。IPA1还受上游基因qWS8/ipa1-2D调控,该基因与IPA1启动子区的DNA甲基化程度减低和染色质开放程度相关,通过上调表达IPA1改变水稻株型[24]。
1.2 水稻枝梗发育调控机理
目前已发现的调控水稻分枝发育的基因主要分为调控枝梗原基的形成和穗大小两类基因。许多调控分蘖发育的基因同样调控分枝的发育。例如,调控分蘖发生的主要基因MOC1、LAX1和LAX2同样调控枝梗原基的形成。
Gn1a是水稻第一个被克隆的控制穗粒数的QTL,也是水稻第一个通过图位克隆的方法成功克隆的数量性状基因。Gn1a编码一个细胞分裂素氧化酶/脱氢(OsCXK2),下调调控细胞分裂素的磷酸化程度[25]。OsCXK2的下调表达导致细胞分裂素在花序分生组织中的积累。而细胞分裂素的积累增加导致繁殖器官数目的增加,最终导致穗粒数的增加。而DEP1通过调控OsCXK2的表达来调控水稻的穗粒数[26]。SP1编码一个可能的多肽转运蛋白质(Peptide transporter,PTR),影响水稻穗长[27]。
1.3 水稻开花期基因对穗粒数的影响
开花期基因在改变抽穗期的同时也影响了水稻株型的相关性状。Ghd7同时调控水稻每穗粒数、株高和抽穗期3个性状[28]。在长日照条件下,单独的phyA或者phyB、phyC共同作用可以诱导Ghd7 mRNA的积累,Ghd7的增强表达抑制下游基因Ehd1的表达,从而推迟抽穗、增加株高和每穗粒数。而单独的phyB降低Ghd7 mRNA的水平,或者在短日照条件下Ehd1通过诱导FT-like基因的表达来促进短日照下提早抽穗。此外,Hd2与Ghd7在长日照条件下也存在遗传互作[29]。Ghd8是另一个同时影响穗粒数、株高和抽穗期的重要基因。长日照条件下,Ghd8下调表达Ehd1、RFT1和Hd3a,延迟水稻开花,但在短日照条件下并不抑制这些基因的表达。Ghd8通过上调调控MOC1基因的表达,从而增加水稻的分蘖数、一次枝梗和二次枝梗数[30]。
2 水稻千粒重相关基因的克隆及调控机理
水稻粒重属于复合性状,一般将其分解成粒长、粒宽、粒厚和填充度四个要素进行研究。Xing等[31]将目前已克隆的粒重相关基因分为3类:第一类是通过影响种子纵轴生长的细胞数量和细胞大小来调控粒长;第二类是通过影响种子横轴生长的细胞数量和细胞大小来调控粒宽;第三类是调控填充度相关基因。
2.1 水稻粒长相关基因的克隆
目前已克隆的粒长相关基因可分为两类。第一类基因主要是从水稻突变体库中筛选获得。D1、D2、D11和D61均筛选自油菜素内酯信号(Brassinosteroid,BR)相关突变体。这些基因的突变均导致植株变矮,子粒变短。D1基因参与调控GA和BR两条传导途径[32,33]。D2和D11参与BR的合成[34,35]。D61则编码BR受体蛋白[36]。SMG1基因调控细胞的增殖,参与BR信号传导途径[37]。油菜素内酯在生理浓度下诱导激活赤霉素合成基因的表达并抑制激活赤霉素失活基因的表达,导致赤霉素的积累,从而促进植物生长[38]。SRS1、SRS3、SRS5和DSG1是从突变体库中筛选到的另一类基因。这些基因的突变导致子粒变小、变短。SRS1的突变造成纵向生长的细胞变短、变小[39],SRS3和SRS5的突变仅造成纵向生长的细胞变短[40,41]。已有研究表明,SRS1、SRS3和SRS5与BR信号传导途径无关。而DSG1编码1个有丝分裂原活化蛋白激酶,参与调控BR信号传导途径[42]。第二类主要通过QTL定位的方法克隆到粒长相关基因。GS3是第一个克隆的粒型基因。GS3编码一个含有3个结构域的跨膜蛋白质,负调控粒长和粒重[43,44]。GL3.1通过调控细胞周期蛋白T1;3负调控子粒大小[45]。TGW6编码IAA-葡萄糖水解酶,TGW6能将IAA-葡萄糖水解成游离的IAA和葡萄糖。而当TGW6功能缺失时,会增加抽穗前子粒中碳水化合物的积累,从而增加产量[46]。qTGW3/TGW3编码1个糖原合成酶激酶(OsGSK5)负调控粒长和粒重[47,48]。
2.2 水稻粒宽相关基因的克隆
目前已克隆的粒宽基因包括GW2、GW5/qSW5、GW7、GW8、GS5、GS6、GS9等。GW2和GW5/qSW5功能相似,均是通过泛素-蛋白酶體负调控粒宽和粒重。GW2或GW5/qSW5功能缺失将导致泛素不能被转移到靶蛋白质,使得本应降解的底物不能被识别降解,进而激活颖花外壳细胞的分裂,从而增加颖花外壳的宽度,最终粒重得到增加[49,50]。GS6和GW7也是通过负调控颖壳细胞数影响水稻粒宽和粒重[51,52]。而GS5、GW8和GS9则是正向调控子粒的大小。GS5能够上调5个G1/S期基因(CDKA1、CAK1、CAK1A、CYCT1和H1)的表达量,从而促进细胞分裂并且增加细胞的横向生长[53]。GW8则是上调多个G1/S期基因的表达量,从而促进细胞的增殖并且提高灌浆速率[54]。后续研究表明,GW8抑制GW7的表达[55]。GS9编码一个未知蛋白质,正向调控细胞分裂[56]。
2.3 水稻填充度相关基因的克隆
G1F1是第一个被发现的调控水稻灌浆的基因。G1F1负调控蔗糖酶的活性,在水稻子粒发育时,调控蔗糖的运输卸载和灌浆[52]。RISBZ1和RPBF协同调控种子储藏蛋白质基因的表达,调节种子蛋白质、淀粉和脂类的含量[57]。此外,OsAGSW1和WTG1综合调控水稻粒长、粒宽和填充度[58,59]。
3 产量性状基因在水稻育种中的应用
早期人们利用野生稻高产QTL位点yld1.1和yld2.1育成了远恢611和Y两优7号水稻[60,61]。随着大量水稻产量相关性状基因的克隆为水稻分子育种提供了丰富的基因资源。Li等[62]通过分子标记辅助育种将粒重增效基因GW6转育到籼稻品种“9311”和粳稻品种中花11。从以“9311”为轮回亲本构建的近等基因系中筛选出1个优良品系SSL-1。该品系比“9311”粒长增加了11%、粒重增加了19%,最终单株产量增加了6.7%。从以中花11为轮回亲本构建的近等基因系中筛选出3个优良品系R1、R2和R3,三者千粒重增加均超过30%,产量增加均超过7%。基因编辑技术的发展为水稻改良提供了新的途径。Li等[63]以中花11为试验材料,利用CRISPR/Cas9技术对Gn1a、DEP1、GS3和IPA1 4个产量性状相关基因进行基因编辑。gn1a、dep1和gs3 3种突变体均表现出穗数、每穗粒数和粒重增加,而ipa1突变体由于编辑位点不同表现出分蘖增多和减少2种截然不同的类型。
4 問题及展望
根据统计,水稻中已克隆产量相关的基因占总数的29%[64]。然而,水稻分子育种上取得的成效却主要集中在质量性状基因的转育和基因聚合上,特别是抗稻瘟病基因和白叶枯病基因的转育。总体来看,水稻产量相关基因在育种上的运用较少,主要原因在于:①产量调控机制认识有限。产量是由复杂的多性状、多基因控制,单一的改良某一个或几个基因不一定能达到预期的育种目标。②对育种有利用价值的基因或等位基因尚少。多数已克隆基因已在长期的驯化或育种实践中得到应用,如gs3、gw5和gw8等。③在育种过程中,对有利基因转移中可能遇到与不利性状存在连锁累赘的问题[65]。
要解决上述问题,就需要深入挖掘和利用更多的产量相关基因的遗传变异。Huang等[66]基于全基因组关联分析和全基因组预测在作物中的研究进展提出了新的分子设计育种策略。随着越来越多的水稻功能基因被克隆,利用不同性状的优异等位基因,综合改良水稻产量和品质性状已成为水稻功能基因组学的重要研究内容之一。
参考文献:
[1] 郦 娟.水稻突变体库的筛选及控制水稻开花和粒重基因HGW的功能研究[D].武汉:华中农业大学,2012.
[2] WANG D Y,XU C M,YUAN J,et al. Changes in agronomic traits of indica hybrid rice during genetic improvement[J].Chinese journal of rice science,2010,24(2):157-161.
[3] JIANG Y H,CAI Z X,XIE W B,et al. Rice functional genomics research:Progress and implications for crop genetic improvement[J].Biotechnology advances,2012,30(5):1059-1070.
[4] LIANG W H,SHANG F,LIN Q T,et al. Tillering and panicle branching genes in rice[J]. Gene,2014,537(1):1-5.
[5] WANG Y H,LI J. Branching in rice[J].Current opinion in plant biology,2011,14(1):94-99.
[6] LI X,QIAN Q,FU Z,et al. Control of tillering in rice[J].Nature,2003,422:618-621.
[7] LIN Q B,WANG D,DONG H,et al. Rice APC/CTE controls tillering by mediating the degradation of MONOCULM 1[J].Nature communications,2012,3:752.
[8] XU C,WANG Y H,YU Y C,et al. Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering[J].Nature communications,2012,3:750.
[9] KOMATSU K,MAEKAWA M,UJIIE S,et al. LAX and SPA:Major regulators of shoot branching in rice[J].Proceedings of the national academy of sciences,2003,100(20):11765-11770.
[10] TABUCHI H,ZHANG Y,HATTORI S,et al. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems[J].The plant cell,2011,23(9):3276-3287.
[11] ISHIKAWA S,MAEKAWA M,ARITE T,et al. Suppression of tiller bud activity in tillering dwarf mutants of rice[J].Plant and cell physiology,2005,46(1):79-86.
[12] YAN H F,SAIKA H,MAEKAWA M,et al. Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death[J].Genes & genetic systems,2007,82(4):361-366.
[13] ARITE T,UMEHARA M,ISHIKAWA S,et al. d14,a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers[J].Plant and cell physiology,2009,50(8):1416-1424.
[14] ARITE T,IWATA H,OHSHIMA K,et al. DWARF10,an RMS1/MAX4/DAD1 ortholog,controls lateral bud outgrowth in rice[J].The plant journal,2007,51(6):1019-1029.
[15] ZOU J,ZHANG S,ZHANG W,et al. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds[J].The plant journal,2006,48(5):687-698.
[16] JIANG L,LIU X,XIONG G S,et al. DWARF53 acts as a repressor of strigolactone signalling in rice[J].Nature,2013,504:401-405.
[17] ZHOU F,LIN Q B,ZHU L H,et al. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling[J].Nature,2013,504:406-410.
[18] ITOH J I,HASEGAWA A,KITANO H,et al. A recessive heterochronic mutation, plastochron1,shortens the plastochron and elongates the vegetative phase in rice[J].The plant cell,1998, 10(9):1511-1521.
[19] KAWAKATSU T,ITOH J I,MIYOSHI K,et al. PLASTOCHRON2 regulates leaf initiation and maturation in rice[J].The plant cell,2006,18(3):612-625.
[20] MIMURA M,NAGATO Y,ITOH J I. Rice PLASTOCHRON genes regulate leaf maturation downstream of the gibberellin signal transduction pathway[J].Planta,2012,235(5):1081-1089.
[21] JIAO Y,WANG Y,XUE D,et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J].Nature genetics,2010,42(6):541-544.
[22] MIURA K,IKEDA M,MATSUBARA A,et al. OsSPL14 promotes panicle branching and higher grain productivity in rice[J].Nature genetics,2010,42(6):545-549.
[23] LU Z,YU H,XIONG G,et al. Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture[J].The plant cell,2013,25(10):3743-3759.
[24] ZHANG L,YU H,MA B,et al. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice[J].Nature communications,2017,8:14789.
[25] ASHIKARI M,SAKAKIBARA H,LIN S,et al. Cytokinin oxidase regulates rice grain production[J].Science,2005,309(5735):741-745.
[26] HUANG X,QIAN Q,LIU Z,et al. Natural variation at the DEP1 locus enhances grain yield in rice[J].Nature genetics,2009,41(4):494-497.
[27] LI S B,QIAN Q,FU Z M,et al. Short panicle1 encodes a putative PTR family transporter and determines rice panicle size[J].The plant journal,2009,58(4):592-605.
[28] XUE W Y,XING Y Z,WENG X Y,et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J].Nature genetics,2008,40(6):761-767.
[29] OSUGI A,ITOH H,IKEDA-KAWAKATSU K,et al. Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice[J].Plant physiology,2011,157(3):1128-1137.
[30] YAN W H,WANG P,CHEN H X,et al. A major QTL,Ghd8,plays pleiotropic roles in regulating grain productivity,plant height,and heading date in rice[J].Molecular plant,2011,4(2):319-330.
[31] XING Y Z,ZHANG Q F. Genetic and molecular bases of rice yield[J].Annual review of plant biology,2010,61:421-442.
[32] ASHIKARI M,WU J Z,YANO M,et al. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein[J].Proceedings of the national academy of sciences,1999,96(18):10284-10289.
[33] FUJISAWA Y,KATO T,OHKI S,et al. Suppression of the heterotrimeric G protein causes abnormal morphology,including dwarfism,in rice[J].Proceedings of the national academy of sciences,1999,96(13):7575-7580.
[34] HONG Z,UEGUCHI-TANAKA M,UMEMURA K,et al. A rice brassinosteroid-deficient mutant,ebisu dwarf (d2),is caused by a loss of function of a new member of cytochrome P450[J].The plant cell online,2003,15(12):2900-2910.
[35] TANABE S,ASHIKARI M,FUJIOKA S,et al. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant,dwarf11,with reduced seed length[J].The plant cell,2005,17(3):776-790.
[36] YAMAMURO C,IHARA Y,WU X,et al. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint[J].The plant cell,2000,12(9):1591-1605.
[37] DUAN P,RAO Y,ZENG D,et al. SMALL GRAIN 1,which encodes a mitogen-activated protein kinase kinase 4,influences grain size in rice[J].The plant journal,2014,77(4):547-557.
[38] TONG H N,XIAO Y H,LIU D P,et al. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice[J].The plant cell,2014,114:132092.
[39] ABE Y,MIEDA K,ANDO T,et al. The SMALL AND ROUND SEED1(SRS1/DEP2) gene is involved in the regulation of seed size in rice[J].Genes & genetic systems,2010,85(5):327-339.
[40] KITAGAWA K,KURINAMI S,OKI K,et al. A novel kinesin 13 protein regulating rice seed length[J].Plant and cell physiology,2010,51(8):1315-1329.
[41] SEGAMI S,KONO I,ANDO T,et al. Small and round seed 5 gene encodes alpha-tubulin regulating seed cell elongation in rice[J].Rice,2012,5(1):1-10.
[42] LIU S,HUA L,DONG S,et al. OsMAPK 6,a mitogen-activated protein kinase,influences rice grain size and biomass production[J].The plant journal,2015,84(4):672-681.
[43] FAN C,XING Y,MAO H,et al. GS3,a major QTL for grain length and weight and minor QTL for grain width and thickness in rice,encodes a putative transmembrane protein[J].Theoretical and applied genetics,2006,112(6):1164-1171.
[44] MAO H,SUN S,YAO J,et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J].Proceedings of the national academy of sciences, 2010,107(45):19579-19584.
[45] QI P,LIN Y S,SONG X J,et al. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3[J].Cell research,2012,22(12):1666-1680.
[46] ISHIMARU K,HIROTSU N,MADOKA Y,et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J].Nature genetics,2013,45(6):707-711.
[47] HU Z J,LU S J,WANG M J,et al. A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice[J].Molecular plant,2018,11(5):736-749.
[48] YING J Z,MA M,BAI C,et al. TGW3,a major QTL that negatively modulates grain length and weight in rice[J].Molecular plant,2018,11(5):750-753.
[49] SONG X J,HUANG W,SHI M,et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J].Nature genetics,2007,39(5):623-630.
[50] WENG J,GU S,WAN X,et al. Isolation and initial characterization of GW5,a major QTL associated with rice grain width and weight[J].Cell research,2008,18(12):1199-1209.
[51] SUN L,LI XJ,FU YC,et al. GS6,A member of the GRAS gene family,negatively regulates grain size in rice[J].Journal of integrative plant biology,2013,55(10):938-949.
[52] WANG E,WANG J,ZHU X,et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication[J].Nature genetics,2008,40(11):1370-1374.
[53] LI Y,FAN C,XING Y,et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J].Nature genetics,2011,43(12):1266-1269.
[54] WANG S,WU K,YUAN Q,et al. Control of grain size,shape and quality by OsSPL16 in rice[J].Nature genetics,2012,44(8):950-954.
[55] WANG S,LI S,LIU Q,et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J].Nature genetics,2015,47(8):949.
[56] ZHAO D S,LI Q F,ZHANG C Q,et al. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J].Nature communications,2018,9(1):1240.
[57] KAWAKATSU T,YAMAMOTO M P,TOUNO S M,et al. Compensation and interaction between RISBZ1 and RPBF during grain filling in rice[J].The plant journal,2009,59(6):908-920.
[58] LI T,JIANG J,ZHANG S,et al. OsAGSW1,an ABC1-like kinase gene,is involved in the regulation of grain size and weight in rice[J].Journal of experimental botany,2015,66(19):5691-5701.
[59] HUANG K,WANG D K,DUAN P G,et al. WIDE AND THICK GRAIN 1,which encodes an otubain-like protease with deubiquitination activity,influences grain size and shape in rice[J].The plant journal,2017,91(5):849-860.
[60] 吳 俊,庄 文,熊跃东,等.导入野生稻增产QTL育成优质高产杂交稻新组合Y两优7号[J].杂交水稻,2010(4):20-22.
[61] 杨益善,邓启云,陈立云,等.野生稻高产QTL导入晚稻恢复系的增产效果[J].分子植物育种,2006,4(1):59-64.
[62] LI Y,TAO H,ZHAO X,et al. Molecular improvement of grain weight and yield in rice by using GW6 Gene[J].Rice science,2014,21(3):127-132.
[63] LI M R,LI X X,ZHOU Z J,et al. Reassessment of the four yield-related genes Gn1a,DEP1,GS3,and IPA1 in rice using a CRISPR/Cas9 system[J].Frontiers in plant science,2016,7:377.
[64] CHEN H,HE H,ZHOU F,et al. Development of genomics-based genotyping platforms and their applications in rice breeding[J].Current opinion in plant biology,2013,16(2):247-254.
[65] ZHOU P,TAN Y,HE Y,et al. Simultaneous improvement for four quality traits of Zhenshan 97,an elite parent of hybrid rice, by molecular marker-assisted selection[J].Theoretical and applied genetics,2003,106(2):326-331.
[66] HUANG X,HAN B. Natural variations and genome-wide association studies in crop plants[J].Annual review of plant biology,2014,65:531-551.