数学建模融入高中课堂教学中的案例设计
2019-09-10杜薇
【摘要】:数学建模融入课堂教学,不仅能够有效提升学生对数学知识的应用能力,而且还能培养学生的核心素养,从而不断促进高中数学教学效果的提升。文章以双曲线及其标准方程为例进行教学设计,以期能够为高中数学教师提供一定的参考。
【关键词】:数学建模 高中数学
数学建模是数学核心素养之一,将数学建模应用到高中数学教学中,不仅能够调动学生学习的积极性,拉近数学学习和实际生活间的关系,而且还能够锻炼学生在问题分析和解决方面的能力,促进学生学习能力的提升。由此可见,数学建模在高中数学教学中发挥着重要作用。以下通过设计双曲线及其标准方程这节课,来具体说明在上课过程中如何渗透数学建模思想。
课题:双曲线及其标准方程
教学目标:
①知识与技能:理解巧曲线推导过程及掌握其标准方程。
②过程与方法:在教学中,让学生体会到数学建模过程。
③情感态度与价值观:通过这节课,使得学生的空间想象、实践能力及运算能为,同时也提高了同学们对于数学学科的兴趣。
教学重难点:
①重点:掌握并且理解双曲线的标准方程。
②难点:理解建立模型的过程。
教学方法:探究合作法。
教学用具:三角板。
教学过程:
(1)复习
教师提问:椭圆的定义是什么?我们上节课是怎样得到椭圆的方程的?
(注:通过回忆以上的知识和椭圆形成的过程,让学生再次体会数学建模的过程,也为这节课通过数学建模形成双曲线的概念做好铺垫.)
(2)讲授新课
①思考题
两定点的距离差为非零常数的点的轨迹是怎样的曲线呢?
(设置这个问题可以让学生与椭圆的定义形成鲜明的对比,前者是两定点间的距离之和为定值,后者是两定点之间的距离之差为定值,很容易引发学生去积极的思考。)
②动手实践
(4)例题示范
例 现在有A、B两个侦测所,两个侦测所之间的距离为1000m,远处有一个炮弹暴炸,A侦测所听到的爆炸声比B侦测所听到的爆炸声时间晚了2s,声音的速度为340m/s,求炮弹爆炸点所在的曲线的方程。
解 ①模型建立
建立如图所示的直角坐标系,以A,B两点的所在的直线为x轴,以线段AB的中点O为原点建立直角坐标系,已知,点M是爆炸点,求点M所在的方程。
小结:以上就是与双曲线有关的建模案例,首先通过认真分析题目,再建立适当的数学模型,发现可以归为双曲线的问题,最后进行求解。对于学生来说,将应用题转化为数学问题还是有一定难度的,教师在引导学生做这类题目的时候,应该首先带领同学们读题目想表达的意思,再慢慢引导学生将应用题抽象成与数学有关的问题,也就是建模的过程,这个过程是非常重要的。
(5)总结:通过设计双曲线的定义的推导过程,让学生体会对待事物的感性认识要上升到理性认识,也就是从实验过程得到双曲线的准确定义的过程。最后,通过推导双曲线的标准方程的过程和例题的讲解,让学生体会如何将一个应用题抽象为数学问题,其实也就是了解建模的过程。
数学建模的应用在高中数学教学阶段是非常必要的,数学教师应该在教学过程中重视和培养学生在建模方面的能力,让学生能够从题目的数据和变量关系中快速找到问题解决方向,并且利用合适的建模方法建立相应的数学模型,解决问题,不断提升学生数学核心素养,培养学生在问题分析和解决方面的能力,推动高中数学教学的发展。
【参考文献】:
【1】 薛子辉,胡典顺.让数学建模走进高中数学课堂[J].中小学数学(高中版),2017,(05):11-13.
【2】 周华.浅议数学建模在高中学生能力培养中的关系[J].情感读本,2017,(8):117.
【3】 谢树芳.一道关于高中生数学建模与函数极值问题的探究——公路拐角对车身长、宽要求的数学模型[J].數学学习与研究:教研版,2017,(4):135.
【4】 李根.高中数学建模的作用与意义研究[J].数学学习与研究:教研版,2017,(3):58.
作者简介:杜薇,女,汉,陕西西安,本科,陕西省西安中学。