APP下载

脑机接口系统,能否梦想成真?

2019-09-10

电脑报 2019年42期
关键词:实验鼠缝纫机电极

人脑植入芯片的研发源自Neuralink公司,它致力于神经技术研究,开发的产品相关传说中的BMI脑机接口,通俗地说,就是把人脑和芯片连接起来。这家公司属于现代版钢铁侠马斯克的企业,按照他本人的说法,短期内公司要解决的是一些人类疾病或医疗相关的问题,而终极目标则是人类增强,或者叫超人类主义(transhumanism)。

Neuralink开发了某种芯片及配套解决方案,通过一种非常细且密集排布的线(thread)连接到大脑上。在Neuralink描绘的概念图里,芯片本身会以可穿戴设备的形式挂在人耳上。这颗芯片会连接至一些传感器——传感器就放在脑壳上,这些传感器再穿透头盖骨,通过很多条线连接到大脑皮层。

这套方案实际要解决的问题是非常多的,而Neuralink这次宣布的技术主要集中在到底用何种线材,怎么把这些线“插”进大脑中去,以及芯片和软件大致该做些什么。这方面的研究,实际不光是Neuralink在做,过去临床医疗领域就有不少的尝试。

系统包含三个组成部分:极为精细的聚合物探针(插到大脑中),一臺神经外科机器人(专门负责插线),以及外部的芯片和配套方案(Neuralink称其为定制化的高密度电子技术)。那么这种技术究竟有什么用呢?核心就是“在大脑和机器之间传输高保真的信息”,作用肯定不是用意念发电或变超人这么玄幻,典型的比如说神经义肢控制机械臂,还有人工语音合成之类,让截肢者可以重新走路,让语言障碍人士能借助外部设备重新说话——现有的一些研究成果就有这样的方案。

另外就医学研究来看,针对大脑的不同位置、不同深度,比如负责语言、视觉、听觉、运动等部位进行“插线”操作,本身也都是有价值的,对于人体和大脑研究都是重要的技术成果产出。至于社交网络上渲染的科幻小说级别的成果,咱还离得有点儿遥远。

在已经发表的paper中,Neuralink演示了现有成果应用到一只实验鼠身上,下图右边的这只实验鼠头上有个USB-C口,3072个电极也就有3072个通道传输(似乎在实验中尝试植入44根线,但只成功了40根,也就是实际成功插入这只实验鼠脑中的总共应该是1280个电极),不知道这个USB接口的具体传输规格如何。左边这张图就比较恐怖了,是手术期的一张照片,展示了这只实验鼠脑皮层表面,其上植入的这些线。

这是一只Long-Evans鼠,Neuralink在paper中强调他们的实验完全符合《实验室动物关怀与使用指导原则》。

我们首先来了解一下这个USB接口部分。实际上从外部能够看到的USB接口,直接就连接着一套电子相关的解决方案,即接口下方的部分——这部分肯定不需要植入到大脑内部,未来如果真的应用于人脑理论上也不会是这种形态。所以它本质上是个实验室产品,其完全体是下面这样的:

A为可处理256个数据通道的ASIC,总共有12个ASIC,一共处理3072个通道;B就是聚合物线了,只不过这里放在了parylene-c基板上,在这些线插入大脑以前需要这层膜;C为钛金属材料的外围;D是数字USB-C连接器。

电极(electrode sites)就将大脑信号传输到这个模块上。这个模块设计的难点包含了多个方面,一部分是因为它需要长期进行数据记录,所以就连封装也有较高的要求。考虑到记录通道众多,这就要求信号放大、数字堆栈整合到同一个阵列上。这个模块的工作包含了放大神经信号(<10 Vrms),同时过滤带外噪声,将放大的信号进行采样和数字化,并进行实时处理。由于是穿戴的,所以功耗和尺寸也都必须要小。

实际上,就Neuralink的技术来说,上面的芯片相关部分算不上是重点,真正的重点在于前端连接大脑皮层的部分,也就是“连接线”和植入线的那台机器。

“缝纫机”机器人

先来说说连接所用的“线材”和接头,Neuralink专门开发了生产神经探针的生产工艺,需要用到高吞吐的生产设备来实现“晶圆级别的微生产工艺”。这样一来,探针在插入到大脑以后可以确保很小的位移,其上用了多种具备生物相容性的薄膜(thin film)材料。主要的基质和电介质材料为聚酰亚胺(就是近期日本宣布禁止对韩国出口的一种半导体原材料),每个薄膜阵列包含了两部分,分别是“线”区和“传感”区。线区很容易理解,就是电极触点;传感区则是连接前文提到芯片的部分了。

这里所谓的薄膜“阵列”,每个阵列实际就包含了48或者96根线,每根线又有32个独立的电极。这么做是为了让线的截面足够小,这样一来也就让大脑组织的位移最小化了,其间需要用到步进式光刻(stepper lithography)和其他微生产工艺,这样通道数量才会比较密集。

Neuralink设计和生产了超过20种不同类型的线和电极,宽度从5μm到50μm不等,厚度一般为4-6μm——包含了三层绝缘层和两层导通层,长度大约为20mm。上面展示的是其中两种。每根线顶端是16μmx50μm的一个圈,是为了让“缝纫机”针头“引线”的。另外还有针对较小的几何表面积,增加有效电荷负载能力,采用PEDOT:PSS和氧化铱也都是个中生产的细节。

那么Neuralink的这种“柔性”线又怎么直接插到大脑里面呢?显然它不够硬,所以就需要有个专门负责插线的装置来做这件事。这也是Neuralink开发“缝纫机”的原因。有关“缝纫机”本体,也就是所谓的神经外科机器人,这部分应该是Neuralink的核心技能。

这台外科手术机器人的一个重要优势在于效率比较高,就是“缝纫”速度比较快,每分钟可以植入6根线,每根线的精度也是微米级别的。

这台机器人的核心技术在于,头部位置有一个成像系统,引导插针进到线材头部的环中,还有目标确认等作用。头部包含了6个独立的光模块,分别都能独立发出405nm、525nm和650nm或白光,这些都是用于插针各种微米级定位操作的。还有集成的软件能够规划插入路径,并且确保线不会纠缠或者过紧。全套的这种计算机视觉系统,还能避开大脑表面的血管,把线插进去。

另外就是不仅支持自动化操作,而且也可以由医生来全手动操作进行微调,从实验数据来看,Neuralink总共用它执行了19次手术操作,植入成功率在87.1±12.6%,好像问题还比较大。

前面看到的只是针对实验鼠的一套解决方案,未来如果真正应用到人脑,接线数量和处理算力预计还将增加。Neuralink表示,目前采用USB口连接外部系统的方式未来会改为无线通讯;此外外科手术需要在头盖骨上钻孔,这会让人感觉到不爽,未来期望能用激光束穿透头盖骨,只打小孔,这是对技术的一些展望。

但有部分科学家表示实验室针对动物的研究结果很可能无法成功转移到人身上。霍华德休斯医学研究所(Howard Hughes Medical Institute)高级研究员Tim Harris说:“如果这项技术要用到人身上,至少再等个5年。这个复杂程度的植入手术,一两年是不够的。”

猜你喜欢

实验鼠缝纫机电极
老屋·缝纫机
吃夜宵可能让人越来越笨
巧妙解决燃料电池电极式书写问题
二氧化钛纳米管阵列/钛pH电极制备与表征
重庆筹建缝纫机博物馆
原电池电极的判断及电极反应式的书写
爱吃咸与基因有关
合成气味可让老鼠恐惧
缝纫机也玩高科技
几种新型燃料电池电极反应式的书写