APP下载

考虑种养平衡的黄淮海小麦-玉米模式下畜禽承载量估算

2019-07-23楚天舒韩鲁佳杨增玲

农业工程学报 2019年11期
关键词:黄淮海农田粪便

楚天舒,韩鲁佳,杨增玲



考虑种养平衡的黄淮海小麦-玉米模式下畜禽承载量估算

楚天舒,韩鲁佳,杨增玲※

(中国农业大学工学院,北京 100083)

黄淮海地区作为中国种植业与养殖业优势区,随着国家对农作物秸秆和畜禽粪便所带来农村环境问题的日益重视,研究该区域“以种定养”、实现种养业废弃物资源化利用、践行绿色发展理念显得尤为重要。以区域种植业实际生产情况为基础,确定典型种植模式下可施用畜禽粪便类有机肥量,经推导计算后确定区域畜禽养殖种类与数量。该文选取河北、河南和山东为黄淮海地区典型代表,在保障粮食产量和满足农田环境风险评估的基础上,研究小麦-玉米生产模式中,畜禽粪便类有机肥每年可施用量,经推导得到高温好氧堆肥处理前的畜禽粪污资源量,进而计算得到每年可承载的不同种类畜禽养殖量。这样既可满足种植业生产的肥料需求,也能缓解养殖业粪污带来的环境压力。研究结果表明:黄淮海地区小麦-玉米生产模式中,每公顷农田每年可利用6头奶牛或18头肉牛或47~51头生猪或731~789只蛋鸡或8 062~8 705只肉鸡粪便N量。在实际生产中,土壤肥力和土壤微生物等多因素影响有机肥可施用量,不同种类畜禽的农田承载量还需进一步优化。该研究为促进黄淮海地区种养结合提供一定的理论基础。

作物;粪便;黄淮海地区;畜禽养殖;畜禽承载量

0 引 言

黄淮海地区作为中国主要种植业与养殖业优势区,在种植业方面,黄淮海地区为小麦-玉米的轮作区[1]。据《中国统计年鉴2018》数据可知,2017年河北、河南和山东3省的小麦和玉米产量分别为7 704.4和6 867.8万t,约占全国总产量的57%和27%。在养殖业方面,3省的猪肉、牛肉、羊肉、牛奶和禽蛋产量分别为1 185.8、166.5、92.2、807.4和1 229.7万t,约占全国总产量的22%、26%、20%、27%和40%。该区域每年生产大量的农畜产品,但也带来农作物秸秆和畜禽粪便等农村突出环境问题。2015年农业部印发《到2020年化肥使用量零增长行动方案》中指出“合理利用有机养分资源,用有机肥替代部分化肥”。2017年农业部印发《畜禽粪污资源化利用行动方案(2017—2020年)》中也指出“以种定养,根据土地承载能力确定畜禽养殖规模”。因此,在保障粮食产量和满足农田环境风险评估的情况下,将适量的畜禽粪便资源化利用转化成有机肥,替代生产中所需的部分化肥,即满足小麦-玉米生产需求,也能推进畜禽粪便资源化利用,实现以种定养,有望成为治理该区域农村突出环境问题、践行绿色发展[2]的途径之一。

黄淮海地区农作物秸秆[3]和畜禽粪便[4-6]资源量的评估结果显示,该地区农作物秸秆和畜禽粪便的资源量大、分布集中和农田环境污染风险大。在有机肥替代化肥的研究中,晁赢等[7]在中国农业科学院山东禹城试验基地试验发现,有机肥替代50%的氮肥(以N作为折算标准)能逐步提高小麦-玉米产量和经济系数。张运龙[8]在中国农业大学曲周试验站试验发现,有机肥替代30%氮肥可维持小麦-玉米产量,提升土壤肥力,同时减少农田氮淋洗的风险。以上研究都证实了,黄淮海地区小麦-玉米生产模式中,有机肥替代部分氮肥,不影响粮食生产。在种养业协调方面,侯世忠等[9]对山东种养业废弃物循环利用情况进行调研,发现其种植与养殖规模不匹配,还需进行科学规划布局。石鹏飞等[10]以河北津龙循环农业园区为例,分析农场水平氮素流动情况,建议其降低氮肥施用、调整作物结构。因此,需要深入研究黄淮海地区种植业与养殖业的废弃物循环利用,促进其协调发展。

目前为止,仍然缺乏针对黄淮海地区“以种定养”相关研究。因此,本文在保障粮食产量与满足农田环境风险评估的情况下,以黄淮海地区小麦-玉米生产模式下可施用的有机肥为基础,推导计算与分析出单位面积所能承载的不同种类畜禽养殖量,为其实现种养平衡,提供一定的理论基础。

1 材料与方法

1.1 研究对象

由于北京和天津农畜产品产量相对低,并且走都市型现代农业发展道路[11-12]。所以,本文选取河北、河南和山东三省为黄淮海地区的典型代表进行研究分析。

1.2 研究思路

本文核心思路:本文以“以种定养”为研究核心思路。即在保障粮食产量和满足农田环境风险评估的情况下,确定小麦-玉米生产可施用的有机肥量,计算出经过高温好氧堆肥处理前的畜禽粪便量,进而推算出不同种类畜禽养殖量。

“以种定养”计算过程:首先,本文以河北、河南和山东的小麦和玉米生产技术标准、实地调研肥料施用量为基础,确定三省小麦-玉米生产的氮肥施用量。进而,整理黄淮海地区有机肥替代氮肥的相关研究,在保障粮食产量的基础上,找出适宜的有机肥替代氮肥的比例。以N为计算标准,确定有机肥N量。并且,考虑到农田环境风险防控,从农田养分平衡的角度出发,进行农田N环境风险分析。利用高温好氧堆肥技术处理畜禽粪便产生有机肥,进而求得未资源化利用前的畜禽粪便N量。按照标准化规模畜禽养殖结构、产污系数和临时堆积N损失率,求得不同种类畜禽的农田承载量。详见下图1。

图1 研究思路简图

1.3 计算数据与过程

1.3.1 小麦-玉米生产模式下N肥用量

本文采用实地走访、现场访谈和文献调研的方法对河北、河南和山东小麦-玉米的生产现状进行调研。近几年,课题组成员在夏收和秋收期间,连续实地走访了河北(石家庄、保定)、河南(安阳、濮阳、新乡、周口)和山东(烟台、淄博、泰安、枣庄)共计12个区(县)25个村,与当地合作社负责人、种植大户和农户进行现场访谈详细了解小麦-玉米实际生产现状。并且,通过检索地方标准数据库,获取河北[13-18]、河南[19-22]和山东[23-27]的小麦和玉米生产技术规程。就此,梳理出黄淮海地区小麦-玉米生产的简要流程及肥料施用情况:耕整地(深松作业、施用基肥、旋耕)→小麦播种→田间管理(灌溉、除草、病虫害防治)→小麦机械收获与秸秆处理(机械粉碎还田)→玉米免耕播种(施肥)→田间管理(灌溉、除草、病虫害防治)→玉米机械收获与秸秆处理(机械粉碎还田)。并且,实际生产施用的肥料以化肥为主,其纯N肥施用量详见下表1。

表1 小麦-玉米生产N肥施用量

1.3.2有机肥替代N肥比例

本文通过对黄淮海地区小麦-玉米生产模式下有机肥替代N肥试验结果进行整理归纳,该地区有机肥替代N肥比例25%~50%[8-9,28-32]。详见表2。在保障粮食产量基础上,兼顾现有各类研究成果,本研究选取有机肥替代比例为30%,施肥方式为秋施基肥[33]。

表2 黄淮海地区小麦-玉米生产模式下有机肥替代N肥试验结果

有机肥N量计算公式如下

=×1(1)

式中为N肥总量,kg/hm2;为有机肥N量,kg/hm2;1为有机肥替代N肥比例,30%。

1.3.3 农田N环境风险分析

有机肥的施用对小麦-玉米生产有稳产、土壤培肥[34-37]的效果,但是同样会带来农田N素流失的风险[38]。盖霞普等[39]在国家褐潮土肥力与肥料效益监测基地,进行了27 a的小麦-玉米的不同施肥处理试验,同样证实了有机肥的施用存在养分流失风险。因此,需要对小麦-玉米生产模式下农田N环境风险进行评价。采用现有标准方法[40]对农田N素输入和输出进行评估。黄淮海地区小麦-玉米生产过程中,N素的输入量(包括N肥、有机肥、种子、秸秆还田、大气干湿沉降和灌溉水)与N素的输出量(籽粒和秸秆)的差值。若差值≤200 kg/hm2,无环境风险;200 kg/hm2<差值≤300 kg/hm2,低风险;300 kg/hm2<差值≤400 kg/hm2,中风险;差值>400 kg/hm2,高风险。

1.3.4 畜禽粪便量

本文采用高温好氧堆肥工程技术将畜禽粪便转化成有机肥,但在工程处理中存在N素损失的情况。通过对归纳与整理相关高温好氧堆肥研究成果发现,猪粪氮损失42.62%,鸡粪氮损失41.70%,牛粪氮损失43.16%,3种畜禽粪便N损失率不存在显著性差异(=0.976),因此,取均值42.26%为畜禽粪便经过高温好氧堆肥处理N损失率。详见下表3。

表3 3种畜禽粪便高温好氧堆肥处理N损失率

因此,高温好氧堆肥处理前的畜禽粪便N量计算公式如下

式中为高温好氧堆肥处理前的畜禽粪便N量,kg/hm2;2为高温好氧堆肥处理N损失率,42.26%。

1.3.5 畜禽养殖量

根据标准化规模养殖生产模式,确定奶牛、肉牛、生猪、蛋鸡和肉鸡的种群结构[65]、饲养周期[66-67]、畜禽养殖产污系数[68]和畜禽粪便临时堆积过程N损失率[69]。由于考虑到各个参数的可得性,奶牛饲养分为产奶与育成阶段,肉牛饲养为育成阶段,生猪饲养分为育肥、保育和妊娠阶段,蛋鸡饲养为产蛋与育成阶段,肉鸡饲养为育肥阶段,详见表4。

首先,由于不同畜禽的饲养周期等参数不一致,计算出某种畜禽的畜禽粪便初始N量。进而,利用高温好氧堆肥前的畜禽粪便N量,反向求得对应不同种类畜禽的养殖量计算的公式如下

式中为畜禽粪便初始N量,kg;为畜禽饲养量,头;c为畜禽的第饲养阶段的比例,%;e为第饲养阶段的畜禽粪便N量,kg/d;为第饲养阶段的饲养周期,d;=1,2,3;为畜禽粪便临时堆积过程N损失率,37.8%[69]。

表4 畜禽养殖量计算参数

2 结果与分析

2.1 有机肥替代量计算与环境风险评价

由表1可知,河北、河南和山东的小麦-玉米生产模式下,N肥总量分别为532.5、562.5和575 kg/hm2。按照有机肥替代30%N肥,通过式(1)计算可得到,有机肥N量分别为159.75、168.75和172.5 kg/hm2。再按照“1.3.3农田N环境风险分析”中的方法对河北、河南和山东的小麦-玉米生产模式下农田N环境风险进行评价,种子量[13-27]、种子N含量[70-71]、大气干湿沉降[72-74]、灌溉水用量[13-27]、灌溉水N含量[75-78]、籽粒产量[13-27]、籽粒N含量[70-71]、秸秆产量(通过籽粒产量与草谷比[79]换算可得)、秸秆N含量[80]等数据带入计算,得到风险评价结果:河北、河南和山东均为中等环境风险,结果详见下表5。

表5 农田N环境风险评价结果

由于河北、河南和山东3省农田N环境风险均处于中等风险等级,因此,需分析3省的农田N输入现状,为后续找寻降低环境风险的备选方案提供基础资料。从3省农田N输入比例图(图2)可知,3省农田N输入结构相似,3省平均化肥约占46.3%,秸秆还田约占27.5%,有机肥约占19.8%,大气干湿沉降约占4.0%,灌溉水约占2.0%,种子约占0.4%。由此可见,农田N输入主要是由肥料N和秸秆还田N构成。

图2 农田N输入比例图

由于肥料N直接关系到农作物生产与产量,因此,本文考虑从农作物秸秆还田N着手分析。在农田调查与农户访谈中,不少种植户和农机合作社负责人反映农作物秸秆还田增加土壤有机质,这与相关研究结果相符合[81]。但与此同时,秸秆还田也带来下茬作物病虫害增加,导致农药施用量与次数增多,进而农资投入与机械作业成本增加。尤其玉米秸秆量大,处理难度也大。鉴于当下政策导向和缺乏其他轻简化秸秆处理途径,大部分种植户采用秸秆还田的措施处理农作物秸秆,但对农作物秸秆离田处理同样支持。因此,基于上文研究的有机肥替代30%N肥的施肥情况下,本文模拟分析不同秸秆还田量下农田环境风险变化趋势。将玉米秸秆和小麦秸秆还田比例分别设定为100%、50%和0,进而计算得到对应的农田N环境风险评价结果,详见下表6。从3省农田N环境风险评价结果可分析得知,减少小麦秸秆和玉米秸秆还田量,进而减少秸秆还田N输入量,可将农田N环境风险从中风险降至低风险或无风险。因此,部分秸秆还田处理,并施用适量的有机肥,是具有一定的理论可行性的方案,但仍需进行大田试验分析与验证。

表6 不同模拟方案下农田N环境风险评价结果

2.2 畜禽粪便N量与畜禽养殖量

在有机肥替代30%N肥的情况下,按照式(2)计算可得,河北、河南和山东的畜禽粪便N量分别为286.60、302.74和309.47 kg/hm2。进而,按照式(3)和式(4)计算可得到:黄淮海地区小麦-玉米生产模式下,每公顷农田可利用6头奶牛或18头肉牛或47~51头生猪或731~789只蛋鸡或8 062~8 705只肉鸡的畜禽粪便N量,详见下表7。每公顷农田可承载禽类(蛋鸡和肉鸡)的养殖量明显多于畜类(奶牛、肉牛和生猪),这主要受到畜类生产周期长与日畜禽粪便排放量大的影响。其中,肉鸡养殖量最大,主要是由于其45 d的饲养周期相对最短。

表7 有机肥替代30%N肥情况下农田可承载畜禽养殖量

查阅《中国统计年鉴2018》数据可知,2017年河北、河南和山东3省小麦-玉米种植面积约为1 037.24万hm2。因此,可推算出2017年黄淮海地区小麦-玉米生产模式下,若采用有机肥替代30%N肥,该地区农田可承载约6 479.68万头奶牛或18 927.89万头肉牛或51 972.37万头生猪或798 617.10万只蛋鸡或8 801 743.97万只肉鸡。

2.3 讨 论

当下研究[82-84]常采用某个地区种植业与养殖业的统计数据推算出该地区畜禽粪便量与农田承载力,即从省或市(县)的大尺度上,研究其种养业是否平衡。而本文以“以种定养”的思路为基础,从种植业的角度出发,在农田尺度上,选择黄淮海地区典型的小麦-玉米生产模式为研究对象,分析在保障粮食产量的情况下,有机肥替代N肥的量,进而求得农田可承载的不同种类畜禽量。其关键在于种植业中有机肥替代化肥量的确定,本文将30%的有机肥替代化肥比例作为黄淮海地区小麦-玉米生产模式的推荐参考值,但在实际生产中由于不同农田土壤肥力(土壤养分[85]、土壤物理性状[86])、土壤微生物种类与数量[87-89]和气候条件[90]等因素影响,有机肥可施用量有所变化。因此,在实际生产中,有机肥替代比例还需要根据生产基础条件进一步优化,进而可计算得到更加准确的不同种类畜禽的农田承载量。

3 结 论

本文对黄淮海地区小麦-玉米生产模式下,构建“以种定养”计算过程,并归纳总结现有研究成果确定了有机肥替代量和高温好氧堆肥处理N损失率等计算系数,进而计算与分析得到对应所能承载的各类畜禽养殖量,得到以下结论:

在保障粮食产量和满足农田环境风险评估的情况下,黄淮海地区小麦-玉米生产模式中,每公顷农田可承载6头奶牛或18头肉牛或47~51头生猪或731~789只蛋鸡或8 062~8 705只肉鸡。在实际生产中,土壤肥力和土壤微生物等多因素影响有机肥可施用量,不同种类畜禽的农田承载量还需进一步优化。

[1] 戈大专,龙花楼,李裕瑞,等.城镇化进程中我国粮食生产系统多功能转型时空格局研究:以黄淮海地区为例[J]. 经济地理,2018,38(4):147-156,182.

Ge Dazhuan, Long Hualou, Li Yurui, et al. The spatio-temporal pattern of multifunctional transformation of China's grain production system in the process of urbanization: The case of Huang-Huai-Hai plain[J]. Economic(in Chinese with English abstract)

[2] 新华网. 中央农村工作会议在北京举行习近平作重要讲话[EB/OL]. (2017-12-29) [2018-11-01] http://www.xinhuanet.com/ politics/leaders/2017-12/29/c_1122187923.htm.

[3] 方放,李想,石祖梁,等. 黄淮海地区农作物秸秆资源分布及利用结构分析[J]. 农业工程学报,2015,31(2):228234.

Fang Fang, Li Xiang, Shi Zuliang, et al. Analysis on distribution and use structure of crop straw resources in Huang-Huai-Hai Plain of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(2): 228234. (in Chinese with English abstract)

[4] 赵路. 黄淮海地区畜禽粪尿氮素资源利用及其环境效应研究[D]. 保定:河北农业大学,2009.

Zhao Lu. The Utilization and Environmental Effects of Livestock Waste Nitrogen in Huang Huaihai[D]. Baoding: Hebei Agricultural University, 2009. (in Chinese with English abstract)

[5] 侯世忠,张淑二,战汪涛,等. 山东畜禽粪便产生量估算及其环境效应研究[J]. 中国人口·资源与环境,2013,23(S2):7881.

Hou Shizhong, Zhang Shuer, Zhan Kuangtao, et al. Estimated yield and environmental effect of dung produced by poultry and livestock in Shandong Province[J]. China Population Resources and Environment, 2013, 23(S2): 7881. (in Chinese with English abstract)

[6] 付强,吴根义,潘鹏,等. 2000-2014年河南畜养产污核算及规律分析[J]. 农业环境科学学报,2017,36(7):1323-1329.

Fu Qiang, Wu Genyi, Pan Peng, et al. Analysis of livestock and poultry waste generation from 2000-2014 in Henan[J]. Journal of Agro-Environment Science, 2017, 36(7): 13231329. (in Chinese with English abstract)

[7] 晁赢,李絮花,赵秉强,等. 有机无机肥料长期配施对作物产量及氮素吸收利用的影响[J]. 山东农业科学,2009,47(3):71-75.

Chao Ying, Li Xuhua, Zhao Bingqiang, et al. Effects of long-term combined application of organic and inorganic fertilizers on crop yield and nitrogen uptake[J]. Shandong Agricultural Sciences, 2009, 47(3): 71-75. (in Chinese with English abstract)

[8] 张运龙. 有机肥施用对冬小麦—夏玉米产量和土壤肥力的影响[D]. 北京:中国农业大学,2017.

Zhang Yunlong. Effect of Organic Fertilizer on Yield of Winter Wheat-Summer Maize and Soil Fertility[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract)

[9] 侯世忠,杨景晁,曲绪仙,等. 山东种养业废弃物循环利用情况调查与对策分析[J]. 中国畜牧杂志,2016,52(24):30-34.

Hou Shizhong, Yang Jingchao, Qu Xuxian, et al. Investigation and analysis on planting and breeding situation of recycling waste management in Shandong province[J]. Chinese Journal of Animal Science, 2016, 52(24): 3034. (in Chinese with English abstract)

[10] 石鹏飞,赵平,赵吉祥,等.种养一体化循环农业园区的接口技术及其生态经济效益分析[J]. 中国农业资源与区划,2016,37(12):167172.

Shi Pengfei, Zhao Ping, Zhao Jixiang, et al. Analysis of interfacing technology and eco-economic benefits of the integrated agricultural industry park[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(12): 167172. (in Chinese with English abstract)

[11] 北京市农村工作委员会. 北京市“十二五”时期都市型现代农业发展规划[EB/OL]. (2012-06-15)[2018-11-01] http://www.bjnw.gov.cn/zfxxgk/ghjh/201206/t20120615_299284.html.

[12] 李瑾,巩前文. 新形势下天津都市型现代农业发展思路研究[J]. 中国农业资源与区划,2011,32(1):44-50.

Li Jin, Gong Qianwen. Development Thought on modern agriculture in Tianjin urban under the new situation[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2011, 32(1): 44-50. (in Chinese with English abstract)

[13] 河北省质量技术监督局.小麦玉米节水、丰产一体化栽培技术规程第1部分:山前平原区:DB13/T924.1-2008[S]. 2008-03-26.

[14] 河北省质量技术监督局.小麦玉米节水、丰产一体化栽培技术规程第2部分:黑龙港地区:DB13/T924.2-2008[S]. 2008-03-26.

[15] 河北省质量技术监督局. 小麦玉米节水、丰产一体化栽培技术规程第3部分:冀东地区:DB13/T924.3-2008 [S]. 2008-03-26.

[16] 河北省质量技术监督局. 冬小麦、夏玉米全程机械化技术规程:DB13/T2004-2014[S]. 2014-01-25.

[17] 河北省质量技术监督局. 冬小麦-夏玉米一年两熟制高产田土壤耕作技术规程:DB13/T2217-2015[S]. 2015-11-06.

[18] 河北省质量技术监督局. 冬小麦-夏玉米生育期优化配置生产技术规程:DB13/T2285-2015[S]. 2015-12-25.

[19] 河南省质量技术监督局.豫北灌区小麦玉米一体化高产高效栽培技术规程:DB41/T 871-2013[S]. 2013-12-25.

[20] 河南省质量技术监督局.豫中南补灌区小麦玉米一体化高产高效栽培技术规程:DB41/T 872-2013[S].2013-12-25.

[21] 河南省质量技术监督局.玉米全程机械化栽培技术规程:DB41/T 1397-2017 [S].2017-07-07.

[22] 河南省质量技术监督局.豫东地区小麦抗逆应变栽培技术规程:DB41/T 1399-2017 [S].2017-07-07.

[23] 山东省质量技术监督局.小麦玉米周年标准化生产技术规程:DB37/T 2940-2017 [S].2017-04-14.

[24] 山东省质量技术监督局.小麦、玉米一年两熟保护性耕作技术规程:DB37/T 2919-2017 [S].2017-02-10.

[25] 山东省质量技术监督局.夏玉米机械化生产技术规程:DB37/T 2284-2013 [S].2013-04-01.

[26] 山东省质量技术监督局.冬小麦-夏玉米节水省肥高产高效生产技术规程:DB37/T 2270-2013 [S].2013-04-01.

[27] 山东省质量技术监督局.小麦玉米一体化高产高效生产技术规程:DB37/T 1889-2011 [S].2011-06-01.

[28] 李燕青,林治安,温延臣,等.不同类型有机肥与化肥配施对小麦品质的影响[J].植物营养与肥料学报,2016,22(6):1513-1522.

Li Yanqing, Lin Zhian, Wen Yanchen, et al. Effects of combined application of chemical fertilizers with different sources of organic manure on the grain quality of winter wheat[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1513-1522. (in Chinese with English abstract)

[29] 邢鹏飞,高圣超,马鸣超,等. 有机肥替代部分无机肥对华北农田土壤理化特性、酶活性及作物产量的影响[J]. 中国土壤与肥料,2016,53(3):98-104.

Xing Pengfei, Gao Shengchao, Ma Mingchao, et al. Impact of organic manure supplement chemical fertilizer partially on soil nutrition, enzyme activity and crop yield in the north China plain.[J].Soil and Fertilizer Sciences in China, 2016, 53(3): 98-104. (in Chinese with English abstract)

[30] 李占. 有机肥和化肥不同配施比例对冬小麦—夏玉米产量和品质的影响[D]. 泰安:山东农业大学,2013.

Li Zhan. Effects of Combined Application of Organic and Chemical Fertilizers on Yield and Quality of Winter Wheat and Summer Maize[D]. Taian: Shandong Agricultural University, 2013. (in Chinese with English abstract)

[31] 孙文彦,赵秉强,田昌玉,等. 氮肥类型和用量对冬小麦品质的影响[J]. 植物营养与肥料学报,2013,19(6):1297-1311.

Sun Wenyan, Zhao Bingqiang, Tian Changyu, et al. Effects of nitrogen fertilizer types and input rates on winter wheat quality[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1297-1311. (in Chinese with English abstract)

[32] 黄婷,荀卫兵,张瑞福.长期不同施肥对北方旱地轮作土壤有机质和作物产量影响的抽样调查[J]. 浙江农林大学学报,2017,34(2):253-260.

Huang Ting, Xun Weibing, Zhang Ruifu. Soil organic matter and crop yield with long-term fertilization schemes for an upland crop rotation in northern China[J]. Journal of Zhejiang A&F University, 2017, 34(2): 253-260. (in Chinese with English abstract)

[33] 何翠翠,李贵春,尹昌斌. 华北冬小麦-夏玉米系统有机态氮替代的产量及肥料效应[J]. 中国土壤与肥料,2018,55(1):43-48.

He Cuicui, Li Guichun, Yin Changbin. Manure nitrogen substitution in autumn base fertilizer improved grain yields of winter wheat summer maize system[J]. Soil and Fertilizer Sciences in China, 2018, 55(1): 43-48. (in Chinese with English abstract)

[34] 李忠芳,徐明岗,张会民,等. 长期施肥下中国主要粮食作物产量的变化[J]. 中国农业科学,2009,42(7):2407-2414.

Li Zhongfang, Xu Minggang, Zhang Huimin, et al. Grain yield trends of different food crops under long-term fertilization in China[J]. Scientia Agricultura Sinica, 2009, 42(7): 2407-2414. (in Chinese with English abstract)

[35] 贾中涛,王文亮,汤建华,等. 畜禽粪便有机肥与氮肥配施对玉米土壤性状的影响[J]. 环境科学与技术,2015,38(S1):34-39.

Jia Zhongtao, Wang Wenliang, Tang Jianhua, et al. Effect of animal manure organic fertilizer and nitrogen combined application on maize soil physical & chemical properties[J]. Environmental Science & Technology, 2015, 38(S1): 34-39. (in Chinese with English abstract)

[36] 刘世亮,刘晨旭,刘红恩,等. 畜禽粪便有机肥与氮肥配施对小麦土壤理化性状及酶活性影响[J]. 西北农业学报,2014,23(8):45-51.

Liu Shiliang, Liu Chenxu, Liu Hongen, et al. Effect of animal manure organic fertilizer and nitrogen combined application on maize soil physical & chemical properties[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2014, 23(8): 45-51. (in Chinese with English abstract)

[37] 刘恩科,赵秉强,胡昌浩,等. 长期施氮、磷、钾化肥对玉米产量及土壤肥力的影响[J].植物营养与肥料学报,2007,13(5):789-794.

Liu Enke, Zhao Bingqiang, Hu Changhao, et al. Effects of long-term nitrogen, phosphorus and potassium fertilizer applications on maize yield and soil fertility[J]. Plant Nutrition and Fertilizer Science, 2007, 13(5): 789-794. (in Chinese with English abstract)

[38] 徐云连,马友华,吴蔚君,等. 农田中有机肥氮磷流失的研究[J]. 中国农学通报,2017,33(14):75-80.

Xu Yunlian, Ma Youhua, Wu Weijun, et al. Nitrogen and phosphorus loss under organic fertilizer application in farmland[J]. Chinese Agricultural Science Bulletin, 2017, 33(14): 75-80. (in Chinese with English abstract)

[39] 盖霞普,刘宏斌,翟丽梅,等. 长期增施有机肥/秸秆还田对土壤氮素淋失风险的影响[J]. 中国农业科学,2018,51(12):2336-2347.

Gai Xiapu, Liu Hongbin, Zhai Limei, et al. Effects of long-term additional application of organic manure or straw incorporation on soil nitrogen leaching risk[J]. Scientia Agricultura Sinica, 2018, 51(12): 2336-2347. (in Chinese with English abstract)

[40] 北京市质量技术监督局.农田氮磷环境风险评价:DB11/T 749-2010[S]. 2010-09-25.

[41] 赵秋,张明怡,刘颖,等. 猪粪堆肥过程中氮素物质转化规律研究[J]. 黑龙江农业科学,2008,30(2):58-60.

Zhao Qiu, Zhang Mingyi, Liu Ying, et al. Study on the nitrogen transforming regulation during the pig dung compost[J]. Heilongjiang Agricultural Sciences, 2008, 30(2): 58-60. (in Chinese with English abstract)

[42] 姜继韶,黄懿梅,黄华,等. 猪粪秸秆高温堆肥过程中碳氮转化特征与堆肥周期探讨[J]. 环境科学学报,2011,31(11):2511-2517.

Jiang Jishao, Huang Yimei, Huang Hua, et al. Carbon and nitrogen dynamics and stabilization time of a straw compost[J]. Acta Scientiae Circumstantiae, 2011, 31(11): 2511-2517. (in Chinese with English abstract)

[43] 姜继韶. 猪粪秸秆高温堆肥添加剂的选择及其保氮机理的研究[D]. 杨凌:西北农林科技大学,2012.

Jiang Jishao. Study on Selection and Mechanism of Nitrogen Conservation Additives During Swine Manure-Straw Composts[D]. Yanglin: Northwest A&F University, 2012. (in Chinese with English abstract)

[44] 罗一鸣,李国学,Frank Schuchardt,等. 过磷酸钙添加剂对猪粪堆肥温室气体和氨气减排的作用[J]. 农业工程学报,2012,28(22):235-242.

Luo Yiming, Li Guoxue, Frank Schuchardt, et al. Effect of additive superphosphate on NH3, N2O and CH4emissions during pig manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22): 235-242. (in Chinese with English abstract)

[45] 秦莉,沈玉君,李国学,等. 不同C/N比对堆肥腐熟度和含氮气体排放变化的影响[J]. 农业环境科学学报,2009,28(12):2668-2673.

Qin Li, Shen Yujun, Li Guoxue, et al. The impact of composting with different C/N on maturity variation and emission of gas concluding N[J]. Journal of Agro-Environment Science, 2009, 28(12): 2668-2673. (in Chinese with English abstract)

[46] 史春梅,王继红,李国学,等. 不同化学添加剂对猪粪堆肥中氮素损失的控制[J]. 农业环境科学学报,2011,30(5):1001-1006.

Shi Chunmei, Wang Jihong, Li Guoxue, et al. Control of different chemical additives on nitrogen loss during composting of pig manure[J]. Journal of Agro-Environment Science, 2011, 30(5): 1001-1006. (in Chinese with English abstract)

[47] 李丹阳,李恕艳,李国学,等.添加剂对猪粪秸秆堆肥的氮素损失控制效果[J]. 农业工程学报,2016,32(增刊2):260-267.

Li Danyang, Li Shuyan, Li Guoxue, et al. Effects of additive on nitrogen loss during composting of pig manure and corn straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp.2): 260-267. (in Chinese with English abstract)

[48] 江滔,常佳丽,马旭光,等. 堆肥中不同氮素原位固定剂的综合比较研究[J]. 农业环境科学学报,2018,37(2):369-375.

Jiang Tao, Chang Jiali, Ma Xuguang, et al. Comprehensive comparison of different nitrogen in situ conservation agents during composting[J]. Journal of Agro-Environment Science, 2018, 37(2): 369-375. (in Chinese with English abstract)

[49] 张生伟,黄旺洲,姚拓,等. 高效微生物除臭剂在畜禽粪便堆制中的应用效果及其除臭机理研究[J]. 草业学报,2016,25(9):142-151.

Zhang Shengwei, Huang Wangzhou, Yao Tuo, et al. Effects of efficient microbial deodorizer in livestock manure composting and its deodorizing mechanism[J]. Acta Prataculturae Sinica, 2016, 25(9): 142-151. (in Chinese with English abstract)

[50] 姜继韶,尧倩. 酸性物质对猪粪秸秆堆肥过程中氮素转化的影响[J]. 环境科学,2017,38(3):1272-1278.

Jiang Jishao, Yao Qian. Effects of acidic materials on the N transformations during the composting of pig manure and wheat straw[J]. Environmental Science, 2017, 38(3): 1272-1278. (in Chinese with English abstract)

[51] 曹云,黄红英,孙金金,等. 超高温预处理对猪粪堆肥过程碳氮素转化与损失的影响[J]. 中国环境科学,2018,38(5):1792-1800.

Cao Yun, Huang Hongying, Sun Jinjin, et al. Effect of hyperthermerphilic pretreatment on transformation and losses of C and N during pig manure composting[J]. China Environmental Science, 2018, 38(5): 1792-1800. (in Chinese with English abstract)

[52] 胡明勇,刘强,荣湘民,等. 物理调理剂在猪粪堆肥中的除臭及保氮效果研究[J]. 湖南农业科学,2008,37(3):85-89.

[53] 胡明勇,刘强,陈雄鹰,等. 两种钙化合物在猪粪-稻草堆肥中除臭及保氮效果研究[J]. 湖南农业科学,2009,38(7):51-54.

[54] 翁俊基. 过磷酸钙在猪粪堆肥过程中的保氮效果研究[J].安徽农业科学,2012,40(8):4528-4529,4617.

Weng Junji. Nitrogen conservation of calcium superphosphate in swine manure compost[J]. Journal of Anhui Agri Sci, 2012, 40(8): 4528-4529, 4617. (in Chinese with English abstract)

[55] 魏宗强,罗一鸣,吴绍华,等. 添加沸石对鸡粪高温堆肥磷钾径流及淋洗损失的影响[J].农业环境科学学报,2012,31(12):2486-2492.

Wei Zongqiang, Luo Yiming, Wu Shaohua, et al. Effects of zeolite addition on the loss of phosphorus and potassium through runoff and leaching in poultry manure composting[J]. Journal of Agro-Environment Science, 2012, 31(12): 2486-2492. (in Chinese with English abstract)

[56] 魏宗强,李吉进,吴绍华. 露天鸡粪好氧堆肥氮素的径流及淋洗损失[J]. 水土保持学报,2011,25(2):44-47.

Wei Zongqiang, Li Jijin, Wu Shaohua. Nitrogen loss in chicken manure compost through runoff and leaching[J]. Journal of Soil and Water Conservation, 2011, 25(2): 44-47. (in Chinese with English abstract)

[57] 叶素萍. 农牧业固体废弃物堆肥化处理过程中氮素损失调控技术的研究[D]. 北京:中国农业大学,2000.

Ye Suping. Studies on the Technologies of Control Nitrogen Loss During Composting of Solid Wastes of Agriculture and Domestic Animal[D]. Beijing: China Agricultural University, 2000. (in Chinese with English abstract)

[58] 黄懿梅,曲东,李国学. 调理剂在鸡粪锯末堆肥中的保氮效果[J]. 环境科学,2003,24(2):156-160.

Huang Yimei, Qu Dong, Li Guoxue. Effect of Adding Amendments on Preserving Nitrogen during Chicken Manure and Saw Composting[J]. Environmental Science, 2003, 24(2): 156-160. (in Chinese with English abstract)

[59] 贺琪,李国学,张亚宁,等. 高温堆肥过程中的氮素损失及其变化规律[J]. 农业环境科学学报,2005,25(1):169-173.

He Qi, Li Guoxue, Zhang Yaning, et al. N Loss and its characteristics during high temperature composting[J]. Journal of Agro-Environment Science, 2005, 25(1): 169-173. (in Chinese with English abstract)

[60] 张生伟,黄旺洲,姚拓,等. 高效微生物除臭剂在畜禽粪便堆制中的应用效果及其除臭机理研究[J]. 草业学报,2016,25(9):142-151.

Zhang Shengwei, Huang Wangzhou, Yao Tuo, et al. Effects of efficient microbial deodorizer in livestock manure composting and its deodorizing mechanism[J]. Acta Prataculturae Sinica, 2016, 25(9): 142-151. (in Chinese with English abstract)

[61] 魏宗强,李吉进,邹国元,等. 不同覆盖措施对鸡粪堆肥氨挥发的影响[J]. 水土保持学报,2009,23(6):108-111.

Wei Zongqiang, Li Jijin, Zou Guoyuan, et al. Influence of different cover materials on NH3volatilization from chicken manure composting[J]. Journal of Soil and Water Conservation, 2009, 23(6): 108-111. (in Chinese with English abstract)

[62] 闫荣荣. 鸡粪堆肥过程中的氮素转化及损失控制[J]. 山西大同大学学报:自然科学版,2016,32(3):44-47.

Yan Rongrong. Nitrogen transformation and loss control in composting of chicken manure[J]. Journal of Shanxi Datong University: Natural Science Edition, 2016, 32(3): 44-47. (in Chinese with English abstract)

[63] 李吉进. 畜禽粪便高温堆肥机理与应用研究[D]. 北京:中国农业大学,2004.

Li Jijin. Study on Mechanism of High Temperature Composting of Livestock Manure and Its Application[D]. Beijing: China Agricultural University, 2004. (in Chinese with English abstract)

[64] 朱海生,左福元,董红敏,等. 堆体规模对牛粪堆肥氨气和温室气体排放的影响[J]. 西北农林科技大学学报:自然科学版,2018,46(5):77-84.

Zhu Haisheng, Zuo Fuyuan, Dong Hongmin, et al. Effect of pile scale on emissions of ammonia and greenhouse gas during cattle manure composting[J]. Journal of Northwest A & F University: Natural Science Edition, 2018, 46(5): 77-84. (in Chinese with English abstract)

[65] 姚继广. 畜禽标准化规模养殖[M]. 北京:中国农业科学技术出版社,2011.

[66] 林源,马骥,秦富. 中国畜禽粪便资源结构分布及发展展望[J]. 中国农学通报,2012,28(32):1-5.

Lin Yuan, Ma Ji, Qin Fu. The structure distribution and prospect of china manure resource[J]. Chinese Agricultural Science Bulletin, 2012, 28(32): 1-5. (in Chinese with English abstract)

[67] 王方浩,马文奇,窦争霞,等. 中国畜禽粪便产生量估算及环境效应[J]. 中国环境科学,2006,26(5):614-617.

Wang Fanghao, Ma Wenqi, Dou Zhengxia, et al. The estimation of the production amount of animal manure and its environmental effect in China[J]. China Environmental Science, 2006, 26(5): 614-617. (in Chinese with English abstract)

[68] 农业部. 第一次全国污染源普查畜禽养殖业产排污系数手册[Z]. 2009.

[69] 贾伟,李宇虹,陈清,等. 京郊畜禽粪肥资源现状及其替代化肥潜力分析[J]. 农业工程学报,2014,30(8):156-167.

Jia Wei, Li Yuhong, Chen Qing, et al. Analysis of nutrient resources in livestock manure excretion and its potential of fertilizers substitution in Beijing suburbs[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 156-167. (in Chinese with English abstract)

[70] 中国疾病预防控制中心营养与食品安全所. 中国食物成分表第一册·第2版[M]. 北京:北京大学医学出版社,2009.

[71] 中国农业科学院北京畜牧兽医研究所.中国饲料成分及营养价值表(第28 版)[EB/OL]. (2017-10-10) [2018-11-01] http://www.chinafeeddata.org.cn/picture/pdf/CFIC2017.pdf.

[72] 宋敏. 增加降水及大气氮沉降对黄淮海平原弃耕地地表节肢动物的影响[J]. 应用生态学报,2016,27(11):3682-3688.

Song Min. Effects of increased precipitation and nitrogen deposition on ground-active arthropods in an old-field of Huang-huai-hai Plain[J]. Chinese Journal of Applied Ecology, 2016, 27(11): 3682-3688. (in Chinese with English abstract)

[73] 尹兴,张丽娟,刘学军,等. 河北平原城市近郊农田大气氮沉降特征[J]. 中国农业科学,2017,50(4):698-710.

Yin Xing, Zhang Lijuan, Liu Xuejun, et al. Nitrogen deposition in suburban croplands of Hebei Plain[J]. Scientia Agricultura Sinica, 2017, 50(4): 698-710. (in Chinese with English abstract)

[74] 张颖,刘学军,张福锁,等. 华北平原大气氮素沉降的时空变异[J]. 生态学报,2006,26(6):1633-1639.

Zhang Ying, Liu Xuejun, Zhang Fusuo, et al. Spatial and temporal variation of atmospheric nitrogen deposition in North China Plain[J]. Acta Ecologica Sinica, 2006, 26(6): 1633-1639. (in Chinese with English abstract)

[75] 胡春胜. 中国生态系统定位观测与研究数据集·农田生态系统卷·河北栾城站[M]. 北京:中国农业出版社,2011.

[76] 欧阳竹.中国生态系统定位观测与研究数据集·农田生态系统卷·山东禹城站[M]. 北京:中国农业出版社,2010.

[77] 张佳宝,汪金舫. 中国生态系统定位观测与研究数据集·农田生态系统卷·河南封丘站[M]. 北京:中国农业出版社,2010.

[78] 王和洲. 中国生态系统定位观测与研究数据集·农田生态系统卷·河南商丘站[M]. 北京:中国农业出版社,2010.

[79] 国家发展和改革委员会. 国家发展改革委办公厅农业部办公厅关于印发编制“十三五”秸秆综合利用实施方案的指导意见的通知[EB/OL]. (2017-11-24) [2018-11-01] http://www.ndrc.gov.cn/zcfb/zcfbtz/201612/t20161207_829417.html.

[80] 牛文娟. 主要农作物秸秆组成成分和能源利用潜力[D].北京:中国农业大学,2015.

Niu Wenjuan. Physicochemical Composition and Energy Potential of Main Crop Straw and Stalk[D]. Being: China Agricultural University, 2015. (in Chinese with English abstract)

[81] 张静,温晓霞,廖允成,等. 不同玉米秸秆还田量对土壤肥力及冬小麦产量的影响[J]. 植物营养与肥料学报,2010,16(3):612-619.

Zhang Jing, Wen Xiaoxia, Liao Yuncheng, et al. Effects of different amount of maize straw returning on soil fertility and yield of winter wheat[J]. Journal of Plant Nutrition and Fertilizer, 2010, 16(3): 612-619. (in Chinese with English abstract)

[82] 郑莉,张晴雯,张爱平,等. 山东省畜禽粪污土地承载力时空分异特征分析[J]. 农业环境科学学报,2019,38(4):882-891.

Zheng Li, Zhang Qingwen, Zhang Aiping, et al. The spatial and temporal distribution features of the land bearing capacity for livestock manure in Shandong Province, China[J]. Journal of Agro-Environment Science, 2019, 38(4): 882-891. (in Chinese with English abstract)

[83] 刘刚,张春义,赵福平,等. 黄土高原畜禽养殖结构及土地承载力分析[J]. 家畜生态学报,2017,38(12):73-77.

Liu Gang, Zhang Chunyi, Zhao Fuping, et al. Analysis on structure of livestock and poultry farming and land carrying capacity of Loess Plateau: Taking Qingyang city of Gansu province as an example[J]. Acta Ecologiae Animalis Domastici, 2017, 38(12): 73-77. (in Chinese with English abstract)

[84] 马良,邱寒峰,张晓萍,等. 桐乡市畜禽养殖粪便产生量估算及农田承载力分析[J]. 浙江农业科学,2017,58(10):1798-1800.

[85] 焦利卫. 施肥对小麦-玉米轮作条件下土壤养分、微生物和酶活性的影响[D]. 天津:河北工业大学,2010.

Jiao Liwei. Effects of Fertilization on Soil Nutrients, Soil Microbes and Soil Enzyme Activities of Wheat-Maize Rotation[D]. Tianjin: Hebei University of Technology, 2010. (in Chinese with English abstract)

[86] 陆太伟,蔡岸冬,徐明岗,等. 施用有机肥提升不同土壤团聚体有机碳含量的差异性[J]. 农业环境科学学报,2018,37(10):2183-2193.

Lu Taiwei, Cai Andong, Xu Minggang, et al. Variation in sequestration of organic carbon associated with differently sized aggregates after organic manure application[J]. Journal of Agro-Environment Science, 2018, 37(10): 2183-2193. (in Chinese with English abstract)

[87] 艾超. 长期施肥下根际碳氮转化与微生物多样性研究[D].北京:中国农业科学院,2015.

Aichao. Carbon and Nitrogen Transformations and Microbial Diversity in the Rhizosphere Soil under Long-term Fertilization Practices[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese with English abstract)

[88] 刘振香,刘鹏,贾绪存,等. 不同水肥处理对夏玉米田土壤微生物特性的影响[J]. 应用生态学报,2015,26(1):113-121.

Liu Zhenxiang, Liu Peng, Jia Xucun, et al. Effects of irrigation and fertilization on soil microbial properties in summer maize field[J]. Chinese Journal of Applied Ecology, 2015, 26(1): 113-121. (in Chinese with English abstract)

[89] 武晓森,杜广红,穆春雷,等. 不同施肥处理对农田土壤微生物区系和功能的影响[J]. 植物营养与肥料学报,2014,20(1):99-109.

Wu Xiaosen, Du Guanghong, Mu Chunlei, et al. Effects of different fertilization on structure and function of soil bacterial community[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 99-109. (in Chinese with English abstract)

[90] 王慧颖,徐明岗,马想,等. 长期施肥下我国农田土壤微生物及氨氧化菌研究进展[J]. 中国土壤与肥料,2018,55(2):1-12.

Wang Huiying, Xu Minggang, Ma Xiang, et al. Research advances of microorganism and ammonia oxidizing bacteria under long term fertilization in Chinese typical cropland[J]. Soil and Fertilizer Sciences in China, 2018, 55(2): 1-12. (in Chinese with English abstract)

Livestock carrying capacity estimation in wheat-corn production model of Huang-Huai-Hai Region considering planting-raising balance

Chu Tianshu, Han Lujia, Yang Zengling※

(100083)

Huang-Huai-Hai region is the major superiority area of planting industry and breeding industry in China. With the increasing attention to the rural environment problems caused by crop straw and livestock manures, it is important to analyze “raising by planting” in Huang-Huai-Hai region, realize agricultural waste comprehensive utilization, and implement green development. “Raising by planting” was the core idea of this paper. The “raising by planting” calculation methods were as follow. First, technical regulations for production of wheat-corn and field research results in Hebei, Henan and Shandong provinces were used to summarize production model of wheat-corn in Huang-Huai-Hai region. So the conventional fertilization could be defined. According to test results of researches, this paper determined the amount of partial replacement of chemical fertilizer by organic manures. At the same time, thermophilic aerobic composting was chosen as techniques of livestock manure comprehensive utilization. The untreated amount of livestock manures was calculated. Then, the quantities of different species of livestock and poultry were calculated. According to the technical regulations, the amount of nitrogenous fertilizer were 532.5, 562.5 and 575 kg/hm2in Hebei, Henan and Shandong provinces. The ratio of partial replacement of chemical fertilizer by organic manures was 30%. So the amount of replacement were 159.75, 168.75 and 172.5 kg/hm2. At the same time, there were no influence on grain security after the replacement of chemical fertilizer by organic manures. Due to the additional application of organic manures promoted soil nitrogen leaching risk, the environmental risk assessment of nitrogen in arable farmland was used. Nitrogen input mainly consisted of nitrogenous fertilizer, organic manure converted from livestock manures, seed, straw returning, atmospheric dry and wet deposition and irrigation water. Nitrogen output mainly consisted of grain and straw. Grade of environment risk in farmland in Hebei, Henan and Shandong provinces were all medium risk. Nitrogen loss rate of thermophilic aerobic composting fromlivestock and poultry manures was 42.26%. Other calculation parameters of livestock and poultry production, such as feeding period, population structure, were defined by many research papers. So in production model of wheat-corn in Huang-Huai-Hai Region, 6 dairy cows, or 18 beef cattle, or 47 to 51 swine, 731 to 789 laying hens or 8062 to 8705 broilers per hectare were land carrying capacity. Besides, at the field scale, various factors, such as soil fertility and soil microbial, might affect the ratio of partial replacement of chemical fertilizer by organic manures. So more researches were needed in the amount of replacement. On account of medium environment risk in farmland, lowering the risks was necessary. Nitrogen input structure: 46.3% chemical fertilizer, 27.5% straw returning, 19.8% organic manure, 4.0% atmospheric dry and wet deposition, 2.0% irrigation water and 0.4% seed. So reducing straw returning was one of risk solutions. In simulation results, reducing corn stalk or wheat straw both lowered environment risk effectively. The results provide a reference for planting and raising combination in Huang-Huai-Hai region.

crop; manures; Huang-Huai-Hai region; livestock and poultry breeding; livestock carrying capacity

2018-11-04

2019-05-28

国家奶牛产业技术体系(CARS36);教育部创新团队发展计划项目(IRT-17R105);国家重点研发计划(2016YFE0204600)

楚天舒,博士生,主要从事生物质工程研究。Email:chuts@cau.edu.cn

杨增玲,教授,博士,博士生导师,主要从事生物质工程研究。Email:yangzengling@cau.edu.cn

10.11975/j.issn.1002-6819.2019.11.025

S19

A

1002-6819(2019)-11-0214-09

楚天舒,韩鲁佳,杨增玲. 考虑种养平衡的黄淮海小麦-玉米模式下畜禽承载量估算[J]. 农业工程学报,2019,35(11):214-222. doi:10.11975/j.issn.1002-6819.2019.11.025 http://www.tcsae.org

Chu Tianshu, Han Lujia, Yang Zengling. Livestock carrying capacity estimation in wheat-corn production model of Huang-Huai-Hai Region considering planting-raising balance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 214-222. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.11.025 http://www.tcsae.org

猜你喜欢

黄淮海农田粪便
黄淮海北部地区夏玉米稳产高产的播期优选
达尔顿老伯的农田
达尔顿老伯的农田
新型冠状病毒感染者咽拭子与粪便排毒规律及临床表现
山西省2020年建成高标准农田16.89万公顷(253.34万亩)
A new pet obsession of Silkie chicken
黄淮海地区现代生态农业园区发展与实践探究
黄淮海夏玉米南方锈病研究综述
黑板像农田
2015年黄淮海夏玉米品种比较试验