基础设施工程全生命周期BIM技术应用
2019-07-01杨林虎王帅芦志强李薇于水
杨林虎 王帅 芦志强 李薇 于水
京津中关村科技城智慧园区市政基础设施工程为大型市政工程领域EPC总承包项目,涉及十余个专业。建设内容主要包括:修建道路16条,全长约30km;涉及雨水、污水、给水、中水、燃气、热力、电力、电信等各类管道总长约300km;建设公园约17.4万平方米,路侧绿化约47.7万平方米,河道及水环境综合整治长度约8.8km;建设高中压调压站、热源厂、公交首末站、公共停车场,占地面积约3.9万平方米。
BIM的必要性分析
大型基础设施工程通常具有地理跨度大、涉及专业多、地下管网排布复杂,施工作业面广、运营期工程资产管理对象分布广,问题排查与定位困难,设备、设施及供应商信息庞杂,管理难度大等特点。本项目在上述特点基础上,又有智慧运维要求,这一要求延长了工程信息的服务期限,强化了工程数据跨阶段传递、更新、维护的重要性。
BIM的内涵是能够连接建筑全生命周期不同阶段的数据,以及它整个形成的过程和这个过程所需要的资源。BIM技术能够集成设计和施工两个阶段的信息,尤其针对基础设施的综合管线工程,可以纳入管线、各类闸门、阀门的安装和供应信息,形成完整的竣工模型,接入运维管理平台,为实现智慧运维创造基础性条件。
利用BIM技术在可视化、参数化、信息化方面的优势可提高项目信息沟通效率,支持项目在环境、成本、质量、安全、进度等多方面的分析、检查和模拟,提高施工阶段的可预测性、可控性和精细化管理程度。将BIM技术全面应用于道路桥梁和综合管网等的设计、施工全过程,可大大减少设计变更和设计错误,降低潜在的施工返工风险。
由此可见,引入BIM技术对智慧园区建设是十分必要的。
全生命周期实施BIM
该智慧园区基础设施工程BIM实施流程可分为BIM实施策划、BIM准备工作、BIM实施、BIM应用总结四个阶段。
BIM实施准备工作主要包括:落实BIM实施所采用的各类软、硬件资源,创建项目BIM元件库、制定通用和专用工作环境,搭建协同设计管理平台,并进行设计工作环境托管,搭建BIM施工管理平台,并对施工管理平台人员进行培训,同时编制项目级BIM标准,用于指导项目实施。
本项目采用了Bentley公司系列软件创建设计和施工模型。搭建了ProjectWise协同设计平台和4D-BIM施工管理平台,并对施工现场业主方、监理方、总承包方和各施工分部进行了多次集中培训,掌握了平台使用技能。编制了多本BIM标准,指导项目顺利实施。
设计阶段BIM应用
创建了道路、桥梁、涵洞、雨污管线、交通工程等十余个专业BIM模型,同时运用无人机倾斜摄影技术实现工程三维实景建模。按照“模型文件—结构组装—专业分装—区域总装—项目总装”的顺序逐级装配,形成整个项目的总装模型。在此基础上开展了BIM可视化、碰撞检查、工程量统计以及仿真性等多种应用。
施工阶段BIM应用
根据现场施工情况,制定了项目施工模型WBS分解原则,即道路工程按照200米一段进行划分,桥涵工程按照构件进行划分,管线工程按照井到井进行划分,其他专业模型按照单体划分。施工过程中,采用“三端一云”的方式协助施工管理,即利用PC端、网页端和移动端实现BIM模型的实时数据填报、查看。利用云平台实现项目数据的集中存储和计算分析。开展了施工方案模拟与优化、可视化技术交底、进度管理、质量与安全管理、人员材料机械管理、综合信息展示、档案管理等多方面应用。
(1)施工方案模拟与优化:传统施工方案的编制一般是基于二维图纸和施工经验,由于缺乏现场验证,其施工可行性往往无法满足实际要求,导致施工方案往往是边施工、边修改、边优化,对工期、质量和成本均产生较大影响。通过BIM技术三维可视化可实现施工方案模拟和优化。
(2)可视化技术交底:通过移动设备可将BIM施工方案带入施工现场。对照现场实际情况进行可视化技术交底,极大地方便了施工人员对施工方案的直观了解。
(3)进度管理:现场工作人员根据每天施工进度在移动端填报进度数据。以填报数据和施工进度计划为基础,可以选择按照计划进度或实际进度,进行施工进度模拟和进度追踪分析,发现偏差,及时采取措施纠正。
(4)质量与安全管理:当管理人员(发起人)发现问题后,可直接在移动端上传图片,填写问题描述和整改要求,发送给整改人。整改人收到整改通知后,根据整改要求完成整改,并将整改情况以及整改后的照片反馈给发起人,发起人收到反馈信息后,对整改情况进行验收確认,形成“发起—整改—确认”的闭环管理。
(5)施工综合信息展示:创建了施工综合信息大屏,设置了项目位置、进度分析、安全施工天数、当前任务进度、实时问题、问题月度数量统计、问题分类统计、问题实时状态统计等八个功能模块,汇总现场重要信息,为快速科学决策提供依据。
(6)其他管理:利用BIM施工管理平台,通过赋予不同人员角色和权限进行人员管理,确保工程信息安全;通过收料单、发料单、盘点单实现工程材料的严格管理;通过扫描机械设备二维码,可填报机械的台班、检查和维修情况,实现机械管理。通过人员、材料、机械的管理,可以进一步提高现场精细化管理水平。
运维阶段BIM应用
根据园区顶层设计,针对基础设施的智慧运营管理指标包括:(1)市政管网智能化监测管理率80%以上;(2)交通诱导屏和智能停车场覆盖率100%;(3)智能路灯覆盖率90%以上。
结合智慧运营管理要求,在施工阶段将相关构件、设备、传感器、管线的闸门和阀门等的安装位置、规格型号、尺寸、生产单位、安装单位、安装日期等信息录入施工管理平台,在竣工验收阶段形成竣工模型,进行数字化移交,并接入园区数据中心,用于道路维护、综合管线维修、设备设施管控、突发事件处置等方面园区的智慧运营管理。
结论与建议
BIM技术在本项目的应用,创新形成了协同设计、协同管理工作模式,实现了模型信息从设计阶段到施工阶段,再到运维阶段的高效传递,形成了一次BIM技术在智慧园区市政工程领域全生命周期应用的重要实践,为后续类似工程应用提供参考案例。利用BIM技术在可视化、协同性、优化性、仿真性方面的优势,革新了传统设计和施工管理手段,体现了BIM技术在提高沟通效率、精细化管理、形成数字资产方面的重要作用和价值贡献。
智能化是全球发展趋势,结合项目智慧运营要求,在项目策划、BIM准备工作、BIM实施等阶段均需要考虑智慧运维需求,在BIM模型创建时要增加与智慧运维相关的基础模型创建;在施工管理平台搭建时要增加与智慧运维相关的过程信息采集功能,将设计和施工阶段的基础性信息传递到运维阶段。
由于BIM技术在我国建设领域应用才刚刚开始,相关配套条件还不完全成熟。虽然BIM技术在本项目的应用取得了一定应用成果,但在应用过程中也出现了对BIM认识不到位、协同设计流程和协同管理流程不完善、平台之间接口不匹配等问题。为此,笔者建议在今后类似工程BIM应用时,应进一步加强对BIM的宣传、提高认识,完善设计阶段协同设计流程和施工阶段协同管理流程,通过二次开发进一步完善不同平台之间的数据接口等相关工作,以更好地推进BIM实施,发挥BIM在项目全生命周期应用的更大价值。