输电线路杆塔接地状态在线监测技术研究
2019-06-15赵立英王敏珍
赵立英 王敏珍
摘 要: 采用人工方式监测输电线路杆塔接地状态时,存在测量时间较长,无法及时监测故障点的弊端,因此研究一种输电线路杆塔接地状态在线监测方法。分析输电线路杆塔接地在线监测原理,获取故障发生时接地电位与入地电流,修正不同形状接地装置,利用平均电位求出输电线路杆塔接地电阻,再计算加入埋深与降阻剂的输电线路杆塔接地装置电阻,以及考虑4个基础接地电阻并联得到的最终接地电阻;故障检测器中设定电流数值,若通过该输电线路杆塔工频接地电流比设定电流大,则故障指示器提示故障,接地电流短路时,依据差动电路原理通过传感器确认故障杆塔位置。实验结果表明,该方法可准确检测出输电线路杆塔接地电阻与故障点准确位置,监测电阻误差均低于0.1 Ω,监测效率高。
关键词: 输电线路; 杆塔; 接地状态; 在线检测; 故障监测; 接地电阻
中图分类号: TN931+.3?34; TM45 文獻标识码: A 文章编号: 1004?373X(2019)12?0100?04
Abstract: In allusion to the disadvantages of long measurement time and inability to monitor the fault points in time when the manual mode is adopted for grounding state monitoring of the power transmission line tower, a grounding state online monitoring method is researched for the power transmission line tower. The principle of grounding online monitoring is analyzed for the power transmission line tower. The grounding potential and grounding current at fault occurrence are obtained. The grounding devices of different shapes are modified. The grounding resistance of the power transmission line tower is solved by using the average potential. The resistance of the grounding device with buried depth and resistance reducing agent added is calculated for the power transmission line tower. The final grounding resistance is obtained by considering the parallel value of four basic grounding resistors. The current value of the fault detector is set. The fault indicator indicates the fault if the power frequency grounding current passing through the power transmission line tower is larger than the set current. The location of the fault tower is determined by the sensor according to the principle of the differential circuit if the grounding current is short?circuited. The experimental results show that the method can accurately detect the grounding resistance of the power transmission line tower and the accurate location of the fault point, and the resistance monitoring errors are all lower than 0.1 Ω, which indicates that the method has a high monitoring efficiency.
Keywords: power transmission line; tower; grounding state; online detection; fault monitoring; grounding resistance
0 引 言
社会与科技的高速发展大大增加了用电负荷,用电安全逐渐引起人们的重视[1]。输电线路杆塔的接地电阻直接影响着供电系统安全,输电线路杆塔接地电阻越小,抗雷击效果越好,电路受雷击损害致使跳闸的可能性就越小,因此有效的输电线路杆塔接地状态在线监测方法就显得尤为重要[2]。利用在线监测方法时刻监视接地电阻,发现不合格接地电阻应立刻采取应对措施,可极大地增强输电线路供电安全性[3];并且有效输电线路杆塔接地状态在线监测方法可准确快速检测出接地短路点,为电路抢修提供宽裕时间[4]。但是当前通常采用人工方式检测输电线路杆塔接地状态,存在测量时间长、无法及时监测到故障点的弊端。因此,本文提出新的输电线路杆塔接地状态在线监测方法。
1 输电线路杆塔接地状态在线监测
1.1 输电线路杆塔接地在线监测原理
输电线路杆塔接地出现故障情况,流向输电线路杆塔接地装置短路电流形成接地电位,公式为:
接地电阻与埋深有一定关系,需要将地表影响考虑进计算内,通过镜像法将接地装置地面镜像设为空间中电阻率等于[ρ]的电流源,具体如图1所示。
图1 接地装置镜像示意图
1.2 输电线路杆塔接地故障检测
输电线路杆塔接地故障检测基本原理为,在故障检测器中设定电流数值,若通过该输电线路杆塔工频接地电流比设定电流大,则故障指示器提示故障[13]。在实际应用中若仅以电流阈值判断故障,容易出现误检导致检测结果不准确,应先研究输电线路各杆塔电流方向[14],故障接地电路图如图2所示。图2中,[I3I1=1+1+4k2k],当输电线路杆塔工频接地电流出现故障时,多数电流流向输电线路接地故障杆塔两侧的避雷线,少数流向故障杆塔[15]。[k]取值较大时,故障杆塔电流与临近杆塔电流相比结果约等于1。
图2 故障接地电路图
接地电流短路时,依据差动电路原理通过传感器确认输电线路故障杆塔位置,接地故障指示器工作原理见图3。
图3 接地故障指示器工作原理
避雷线电流值大小会受两侧电参数影响,两侧传感器输出信号合为幅值相同的波形,杆塔正常情况时,杆塔两侧信号为方向相反的同样大小电流。因此输入指示器大小接近零,指示器不受影响。杆塔出现故障时杆塔两侧信号为方向相同的同样大小电流,因此电流增加1倍,指示器发出故障提示。
2 实验分析
为验证本文方法监测输电线路杆塔接地状态情况,将本文方法与三极相位法和钳表法进行监测对比。选取某供电局10个输电线路杆塔进行测试。20个输电线路杆塔基本情况见表1。
表1 待监测输电线路杆塔基本情况
测试3种测量方法监测20个输电线路杆塔接地电阻监测结果见表2。
3种方法监测输电线路杆塔接地电阻误差结果见表3。分析表3得出,本文方法监测输电线路杆塔接地电阻误差均低于0.1 Ω,而三极相位法与钳表法监测电阻结果误差均大于1 Ω,钳表法监测误差甚至高于6 Ω。因此可知本文方法监测输电线路杆塔接地状态准确,可用在实际杆塔接地状态在线监测中。
3 结 论
本文研究的输电线路杆塔接地状态在线监测方法可准确监测出输电线路杆塔接地电阻与故障点,并可以快速反馈给指示器。本文技术不仅适用于普通场所,也适用于出现故障损失巨大的超高压输电线路以及人工不方便检测的各种地质的偏远山区。经大量实验结果可知,采用本文方法可以实时准确地监测输电线路杆塔接地电阻及故障点,减少因雷击等故障导致输电线路杆塔跳闸情况,确保输电线路的正常运行。
注:本文通讯作者为王敏珍。
参考文獻
[1] 黄瑞莹,黄道春,周军,等.±400 kV直流输电线路杆塔涉鸟故障风险区域研究[J].电工电能新技术,2017,36(2):68?73.
HUANG Ruiying, HUANG Daochun, ZHOU Jun, et al. Research on bird damage risk region of 400 kV DC transmission line [J]. Advanced technology of electrical engineering and energy, 2017, 36(2): 68?73.
[2] 俞越中,朱海峰,张子阳,等.输电线路杆塔接地体选材研究[J].材料科学与工艺,2017,25(5):25?31.
YU Yuezhong, ZHU Haifeng, ZHANG Ziyang, et al. Research on material selection of transmission tower grounding body [J]. Materials science and technology, 2017, 25(5): 25?31.
[3] 李臻奇,蔡翔,易浩,等.考虑接地电阻特性影响的差异性杆塔接地设计[J].电力科学与技术学报,2016,31(4):168?174.
LI Zhenqi, CAI Xiang, YI Hao, et al. Study on difference tower grounding considering the characteristics of the grounding resistance [J]. Journal of electric power science and technology, 2016, 31(4): 168?174.
[4] 齐郑,饶志,杨琳琳.OPGW架空输电系统任一点接地短路电流分布的研究[J].电力系统保护与控制,2016,44(2):86?94.
QI Zheng, RAO Zhi, YANG Linlin. Research of current distribution between OPGWs in overhead transmission system with grounding fault at any point [J]. Power system protection and control, 2016, 44(2): 86?94.
[5] 成林,孔志战,王森,等.雷电流对杆塔接地装置冲击特性影响规律的研究[J].西安交通大学学报,2017,51(4):53?58.
CHENG Lin, KONG Zhizhan, WANG Sen, et al. Influence of lightning current on impulse characteristic of ground device of pole and tower [J]. Journal of Xian Jiaotong University, 2017, 51(4): 53?58.
[6] 肖微,胡元潮,阮江军,等.柔性石墨复合接地材料及其接地特性[J].电工技术学报,2017,32(2):85?94.
XIAO Wei, HU Yuanchao, RUAN Jiangjun, et al. Flexible graphite composite electrical grounding material and its grounding application features [J]. Transactions of China Electrotechnical Society, 2017, 32(2): 85?94.
[7] 马御棠,陈奎,易志兴,等.超高压交流输电线路融冰避雷线绝缘架设对杆塔接地安全的影响[J].高电压技术,2016,42(2):650?656.
MA Yutang, CHEN Kui, YI Zhixing, et al. Effect of ice?melting ground wire insulation erection of EHV AC transmission lines on grounding safety of tower [J]. High voltage engineering, 2016, 42(2): 650?656.
[8] 李伟,向常圆,文习山,等.特高压输电线路杆塔雷电流分布的仿真[J].高电压技术,2016,42(8):2642?2650.
LI Wei, XIANG Changyuan, WEN Xishan, et al. Simulation of lightning current distribution in UHV transmission line towers [J]. High voltage engineering, 2016, 42(8): 2642?2650.
[9] 甘艳,邹建明,张昌,等.柔性石墨接地体在山区杆塔接地网中的应用[J].科学技术与工程,2017,17(10):198?201.
GAN Yan, ZOU Jianming, ZHANG Chang, et al. The application of flexible graphite composite electrical grounding material in mountain grounding grid [J]. Science technology and engineering, 2017, 17(10): 198?201.
[10] 张福轩,万建成,程更生,等.架空输电线路铁塔组立施工技术标准体系优化研究与建议[J].中国电力,2017,50(11):59?64.
ZHANG Fuxuan, WAN Jiancheng, CHENG Gengsheng, et al. Optimization research on technical standard system for assembly and erection construction of the steel towers of overhead transmission line [J]. Electric power, 2017, 50(11): 59?64.
[11] 黄新波,廖明进,徐冠华,等.采用光纤光栅传感器的输电线路铁塔应力监测方法[J].电力自动化设备,2016,36(4):68?72.
HUANG Xinbo, LIAO Mingjin, XU Guanhua, et al. Stress monitoring method applying FBG sensor for transmission line towers [J]. Electric power automation equipment, 2016, 36(4): 68?72.