APP下载

具有临界Sobolev-Hardy项的拟线性p-重调和方程解的存在性

2019-06-11任艳桑彦彬

河北科技大学学报 2019年2期

任艳 桑彦彬

摘要:为了研究一类带有Hardy项和多临界Sobolev-Hardy指数的拟线性p-重调和方程解的存在性,借助于Ekeland变分原理,给出上述问题解的存在性定理。首先,将方程对应的变分泛函定义在约束集Mη(通常称为Nehari流形)上,使得该泛函下方有界。其次,利用纤维映射将上述集合Mη划分为M+η,M0η和M-η等3部分,并分别研究每部分的性质,证明了M+η和M-η中泛函极小值的存在性。最后,利用隐函数定理,得到在参数满足一定条件下,存在极小化序列{un},满足(PS)c条件,从而完成了该方程解的存在性的证明。所得结论可为判定解的结构和性质提供理论依据。

关键词:非线性泛函分析;临界Sobolev-Hardy项;拟线性p-重调和方程;Ekeland变分原理;解的存在性

中图分类号:O175.25文献标志码:A

Abstract:In order to study a class of quasilinear p-biharmonic equations with Hardy terms and multi-critical Sobolev-Hardy exponents, the existence theorem of the solutions to the above problem is established by means of the Ekeland variational principle. Firstly, to guarantee the variational functional is bounded from below, it is restricted on a set  Mη (usually called Nehari manifold). Secondly, the set Mη  is divided into three parts  M+η, M0η  and M-η  by using fibering maps. Moreover, the existence of minimum in  M+η and M-η  is proved by studying the properties of the two subsets. Finally, by using implicit function theorem, it is found that there exists a minimizing sequence {un}  making the (PS)c  conditions hold when the parameters satisfy certain conditions. Therefore, the existence of the solutions to the problem is proved. The conclusions provide a theoretical basis for judging the structure and properties of the solutions.

Keywords:nonlinear functional analysis; critical Sobolev-Hardy terms; quasilinear p-biharmonic equations; Ekeland's variational principle; existence of the solution

3結论

本文讨论了一类具有临界指数的p-重调和方程,运用变分方法和Ekeland变分原理,建立了其解的存在性定理,可为判定解的结构和性质提供理论依据。

参考文献/References:

[1]TSING-SAN H, HUE-LI L. Multiple positive solutions for singular elliptic equations with weighted Hardy terms and critical Sobolev-Hardy exponents[J]. Proceedings of the Royal Society of Edinburgh Section A-Mathematics, 2010, 140(3):617-633.

[2]WANG Li, WEI Qiaoling, KANG Dongsheng. Multiple positive solutions for p-Laplace elliptic equations involving concave-convex nonlinearities and a Hardy-type term [J]. Nonlinear Analysis, 2011, 74(2): 626-638.

[3]MUSINA R. Optimal Rellich-Sobolev constants and their extremals[J]. Differential and Integral Equations, 2014, 27(5):579-600.

[4]LI Yuanyuan. Nonexistence of p-Laplace equations with multiple critical Sobolev-Hardy terms[J]. Applied Mathematics Letters, 2016, 60:56-60.

[5]GHOUSSOUB N, YUAN C. Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents[J]. Transactions of the American Mathematical Society, 2000, 352(12):5703-5743.

[6]GAO Wenjie, LI Yuanxiao. Existence of multiple solutions for quasilinear elliptic equation with critical Sobolev-Hardy terms [J]. Mathematical Methods in the Applied Sciences, 2015, 38(1):145-154.

[7]LI Yuanyuan, GUO Qianqiao, NIU Pengcheng. The existence of solutions for quasilinear elliptic problems with combined critical Sobolev-Hardy terms[J]. Journal Mathematical Analysis and Applications, 2012,388:525-538.

[8]GAO Wenliang, PENG Shuangjie. An elliptic equation with combined critical Sobolev-Hardy terms[J]. Nonlinear Analysis, 2006, 65(8):1595-1612.

[9]吕登峰. 一类含Sobolev-Hardy临界指数椭圆方程非平凡解的存在性[J]. 石河子大学学报(自科版), 2007, 25(4):525-528.LYU Dengfeng. Existence of nontrivial solutions for an elliptic equations with critical Sobolev-Hardy exponents [J]. Journal of Shihezi University (Natural Science Edition), 2007, 25(4):525-528.

[10]BHAKTA M. Entire solutions for a class of elliptic equations involving p-biharmonic operator and Rellich potentials[J]. Journal of Mathematical Analysis and Applications, 2015, 423(2):1570-1579.

[11]NYAMORADI N, JAVIDI M. Solutions of the quasilinear elliptic systems with combined critical Sobolev-Hardy terms[J]. Ukrainian Mathematical Journal, 2015, 67(6):1-25.

[12]朱玉, 商彦英. 带有加权Hardy-Sobolev临界指数的拟线性椭圆方程正解的存在性和多重性[J]. 西南大学学报(自然科学版), 2018, 40(2):56-63.ZHU Yu, SHANG Yanying. Existence and multiplicity of positive solutions for a quasilinear elliptic equation with weighted Hardy-Sobolev exponents[J]. Journal of Southwest University (Natural Science Edition), 2018, 40(2):56-63.

[13]PENG Zhen, CHEN Guanwei. Existence and multiplicity of positive solutions for p-Laplacian elliptic equations[J]. Boundary Value Problems, 2016, 2016:125.

[14]刘海燕, 廖家锋, 唐春雷. 带Hardy-Sobolev临界指数的半线性椭圆方程正解的存在性[J]. 西南大学学报(自然科學版), 2015, 37(6):60-65.LIU Haiyan, LIAO Jiafeng, TANG Chunlei. Existence of positive solutions for semilinear elliptic equations with critical Hardy-Sobolev exponents [J]. Journal of Southwest University (Natural Science Edition), 2015, 37(6):60-65.

[15]CALDIROLI P. Radial and non radial ground states for a class of dilation invariant fourth order semilinear elliptic equations on RN[J]. Communications on Pure and Applied Analysis, 2014, 13(2):811-821.

[16]BUENO H, PAES-LEME L, RODRIGUES H. Multiplicity of solutions for p-biharmonic problems with critical growth [J]. Rocky Mountain Journal of Mathematics, 2018, 48(2):425-442.

[17]杜刚. 全空间上带Hardy-Sobolev临界指数的拟线性椭圆方程变号解的存在性[J]. 西南师范大学学报(自然科学版), 2014, 39(9):11-16.DU Gang. On existence of sign-changing solutions for quasilinear elliptic equation involving Hardy-Sobolev exponents in RN[J]. Journal of Southwest China Normal University (Natural Science Edition), 2014, 39(9):11-16.

[18]DAVIES E B, HINZ A M. Explicit constants for Rellich inequalities [J]. Mathematische Zeitschrift, 1998, 227(3):511-523.

[19]MICHEL W. Minimax Theorem [M].Boston: Birkhuser, 1996.

[20]TARANTELLO G. On nonhomogeneous elliptic equations involving critical Sobolev exponent [J]. Annales de Linstitut Henri Poincaré, 1992, 9(3):281-304.

[21]CHEN Yaoping, CHEN Jianqing. Multiple positive solutions for a semilinear equation with critical exponent and prescribed singularity[J]. Nonlinear Analysis Theory Methods and Applications, 2016, 130(6):121-137.