H2O2处理对于ZnO薄膜性能的影响
2019-05-23李博高晓红张文通王天宇金宝昌
李博 高晓红 张文通 王天宇 金宝昌
摘要:本文研究了对ZnO薄膜的光致发光、晶体缺陷、晶粒尺寸和表面形貌的影响。采用PL测试表征材料的缺陷密度,用HR-XRD表征薄膜的结晶情况,用SEM表征ZnO薄膜材料的表面形貌。结果表明经3%浓度的H2O2处理10s的ZnO薄膜缺陷显著降低,结晶情况有所改善,晶粒尺寸增大。利用H2O2处理可以降低ZnO薄膜的缺陷态,提高了其在应用中的电学稳定性。
关键词:射频磁控溅射;ZnO薄膜;H2O2处理
中图分类号:G642 文献标识码:A
文章编号:1009-3044(2019)08-0240-03
Effect of H2O2 on Performance of ZnO Thin Films
LI Bo, GAO Xiao-hong, ZHANG Wen-tong, WANG Tian-yu, JIN Bao-chang
(Jilin Jianzhu University, College of Electrical and Computer Engineering, Changchun 130114, China)
Abstract:The effects of H2O2 treatment on photoluminescence, crystal defects, grain size and surface morphology of ZnO thin films were investigated in this paper. The defect density of the material was characterized by PL test. The crystallization of the film was characterized by HR-XRD. The surface morphology of the ZnO film was characterized by SEM. The results show that the crystal defects of ZnO film treated by 3% concentration of H2O2 for 10s are significantly reduced, the crystallization condition is improved, the grain size is increased. With H2O2 treatment, the defect density of ZnO films is effectively reduced, and thus the electrical stability for application can be improved.
Key words:RF magnetron sputtering;ZnO Thin Films;H2O2 treatment
1 引言
金屬氧化物薄膜晶体管(TFT)具有高场效应迁移率、宽工艺窗口、高电流开关和良好的光学透明性等优异特性,尤其是ZnO基TFT在柔性透明电子器件有十分广阔的应用前景。ZnO作为一种环保的低成本宽带隙半导体,具有非常稳定的电学,化学和光学性能,并已被广泛用作TFT的有源层材料[1-3]。然而,在ZnO有源层薄膜沉积的过程中,尤其是在低温制备条件下,ZnO材料不可避免地会存在大量的晶体缺陷,通常认为ZnO薄膜材料内的主要缺陷是氧空位(Vo)和锌间隙(Zni)[4,5],使得ZnO薄膜作为有源层的TFT器件电学性能出现不稳定的现象,例如阈值电压的漂移、偏压不稳定性、滞回不稳定性等[6-8]。可以通过离子掺杂、热处理等方法降低薄膜中的氧缺陷[9,10],使薄膜的结晶质量有所提高,但这些方法不利于器件在柔性衬底上制备,并且有些离子如Ga、In等不仅储量稀少,更会破坏自然环境。本文提出了采用H2O2处理ZnO薄膜的方法,利用其氧化性减少ZnO薄膜内的氧缺陷,既避免了高温制备,又不必引入其他杂质离子,使其在应用时具有更高的电学稳定性。
2 实验
通过射频磁控溅射的方法在Si(004)衬底上沉积ZnO薄膜,沉积在室温下进行,未对氧化锌进行任何有意的离子掺杂。首先,将Si衬底放入丙酮中超声清洗10min,去除有机分子型沾污,接着用乙醇对Si衬底超声清洗10min,去除残余丙酮,最后使用去离子水超声清洗Si衬底,去除残余乙醇和离子型沾污,用氮气将衬底吹干。然后,取2片Si衬底放入Kurt J.Lesker公司的PVD75 型射频磁控溅射仪中,使用射频磁控溅射方法在Si衬底上沉积ZnO薄膜,靶材是纯度为99.99%的高纯ZnO陶瓷靶。先将真空度抽至5×10-5Torr,然后通入纯度为99.999%的Ar气,将气压保持在20mTorr,射频功率设定在50W对Ar气进行启辉。接着将Ar:O2设置为95%:5%,生长时气体压强保持在8mTorr,射频功率为100W,生长时间为360s,整个生长过程在室温下进行。取出后将其中1片样本放入浓度为3%的H2O2溶液中浸泡10s,然后用去离子水冲洗干净,用氮气吹干,另一片样本未进行其他处理作为对比。所用3%浓度的H2O2溶液是使用30%浓度H2O2加入其9倍体积的去离子水稀释而成。使用Bruker D8 DISCOVER HR-XRD在室温下测试了ZnO薄膜的X射线衍射谱,使用JEOL JSM-7610F拍摄扫描电子显微镜(SEM)图像;采用日本 HORIBA 公司的光致发光/拉曼( PL /Raman)光谱仪在室温下对ZnO薄膜的光学特性进行表征。
3 结果与讨论
图1给出了在Si(004)衬底上沉积的ZnO薄膜的PL光谱的发光特性,测试在室温下进行,激发光源波长为325nm。H2O2处理前后的ZnO薄膜均在380nm处观察到本征发光峰,可以看出H2O2处理并未对ZnO薄膜的能带结构造成明显的改变。在可见光区的发光峰为缺陷发光[11,12],可以明显看出经过H2O2处理的ZnO薄膜缺陷发光大大低于未经过H2O2处理的ZnO薄膜。H2O2可以为ZnO薄膜中的氧空位提供O原子和足够的结合能,从而填补氧空位。在ZnO薄膜在应用到TFT器件时,这些氧空位会俘获载流子,造成TFT器件的电学性能不稳定,转移特性曲线出现滞回现象,阈值电压发生漂移等,晶体缺陷的减少会使滞回现象降低[13,14]。ZnO薄膜的晶体缺陷主要是氧空位(VO)和锌间隙(Zni),虽然在溅射时适当的升高氧分压可以使薄膜沉积时的氧离子增多,使得沉积的ZnO接近化学配比,降低氧空位和锌间隙,但溅射时O2浓度的升高会使粒子与O2的碰撞几率增大,降低粒子到达衬底时的结合能,导致晶体结构松散;并且O2浓度升高生成氧负离子的几率会一同升高,氧负离子会高速轰击ZnO薄膜造成反溅射,破坏ZnO的晶体结构。而使用H2O2处理ZnO薄膜的方法可以保证薄膜晶体结构致密性,使用化学的方法弥补氧空位缺陷。
圖2给出了在Si(004)衬底上沉积的ZnO薄膜的XRD 2θ-ω图谱,可以看出位于34.45°的ZnO(002)峰,表明ZnO薄膜是具有六方纤锌矿结构的多晶和具有垂直于基底的c轴的优选取向[15]。可以通过ZnO(002)峰的强度和半峰宽(FWHM)来评估ZnO膜的结晶质量。经H2O2处理的ZnO薄膜的(002)峰强度略高于未经H2O2处理的ZnO薄膜,但是半峰宽未观察到明显的变化。这表明H2O2处理后的ZnO薄膜结晶度得到了改善,虽然H2O2对ZnO具有腐蚀性,但低浓度的H2O2短时间内并不会破坏ZnO薄膜的结晶,主要发生了双氧水中的O填补氧空位的反应,对修复薄膜的晶体缺陷有所帮助。但双氧水浓度过高或者处理时间过长,H2O2就会与ZnO发生进一步反应,破坏ZnO的晶体结构并与ZnO生成其他物质。因此摸索出适合的处理时间和溶液浓度是这种工艺的关键。
图3所示是ZnO薄膜的扫描电子显微镜照片,可以看出未经H2O2处理的ZnO薄膜晶粒尺寸大约为13-15nm,而经过H2O2处理的ZnO薄膜晶粒尺寸明显增加,大约在23-27nm之间,较大的晶粒尺寸有助于减小晶界对载流子造成的散射,提高载流子的弛豫时间,从而提高薄膜的载流子迁移率,高迁移率的材料是制成高刷新率TFT器件的必要条件[16,17]。经H2O2处理的ZnO薄膜结晶度高于未经H2O2处理的ZnO薄膜,可能是H2O2的为晶粒融合提供了能量。但薄膜表面变得不平整,是由H2O2对ZnO薄膜的腐蚀作用造成的,不过ZnO薄膜的厚度未发生明显改变,表明H2O2未对其造成严重的腐蚀。
4 结论
在ZnO薄膜的制备过程中经常出现氧空位和锌间隙等晶体缺陷,对其电学性能的稳定性带来严重的负面影响。本文通过H2O2处理ZnO薄膜的化学方法实现了在室温条件下降低ZnO薄膜晶体缺陷的目的,并且改善了薄膜的结晶度,增大了ZnO薄膜的晶粒尺寸。薄膜的电学稳定性得到了提高,并且方法简单易实现,没有大幅度提高制备工艺的复杂程度和工艺成本。
参考文献:
[1] Kaltenbrunner, M., T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. Bauer-Gogonea, S. Bauer and T. Someya (2013). "An ultra-lightweight design for imperceptible plastic electronics." Nature 499(7459): 458-463.
[2] Rogers, J. A., T. Someya and Y. Huang (2010). "Materials and mechanics for stretchable electronics." Science 327(5973): 1603-1607.
[3] Du, X. and G. S. Herman (2018). "Transparent In-Ga-Zn-O field effect glucose sensors fabricated directly on highly curved substrates." Sensors & Actuators B Chemical 268: 123-128.
[4] Fan, J. C., K. M. Sreekanth, Z. Xie, S. L. Chang and K. V. Rao (2013). "p-Type ZnO materials: Theory, growth, properties and devices." Progress in Materials Science 58(6): 874-985.
[5] Chen, W. T., S. Y. Lo, S. C. Kao, H. W. Zan, C. C. Tsai, J. H. Lin, C. H. Fang and C. C. Lee (2011). "Oxygen-Dependent Instability and Annealing/Passivation Effects in Amorphous In-Ga-Zn-O Thin-Film Transistors." IEEE Electron Device Letters 32(11): 1552-1554.
[6] Ye, Z., Y. Yuan, H. Xu, Y. Liu, J. Luo and W. Man (2017). "Mechanism and Origin of Hysteresis in Oxide Thin-Film Transistor and Its Application on 3-D Nonvolatile Memory." IEEE Transactions on Electron Devices 64(2): 438-446.
[7] Furuta, M., Y. Kamada, T. Hiramatsu, C. Li, M. Kimura, S. Fujita and T. Hirao (2011). "Positive Bias Instability of Bottom-Gate Zinc Oxide Thin-Film Transistors with a SiOx/SiNx-Stacked Gate Insulator." Japanese Journal of Applied Physics 50(3): 03CB09-03CB09-04.
[8] Fuh, C. S., P. T. Liu, W. H. Huang and S. M. Sze (2014). "Effect of Annealing on Defect Elimination for High Mobility Amorphous Indium-Zinc-Tin-Oxide Thin-Film Transistor." IEEE Electron Device Letters 35(11): 1103-1105.
[9] Ding, X., C. Qin, J. Song, J. Zhang, X. Jiang and Z. Zhang (2017). "Erratum to: The Influence of Hafnium Doping on Density-of-States in Zinc Oxide Thin-Film Fransistors Deposited Via Atomic Layer Deposition." Nanoscale Research Letters 12(1): 172.
[10] Teng, L. F., P. T. Liu, Y. J. Lo and Y. J. Lee (2012). "Effects of microwave annealing on electrical enhancement of amorphous oxide semiconductor thin film transistor." Applied Physics Letters 101(13): 488.
[11] Ozgür, U., Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do?an, V. Avrutin, S. J. Cho and H. Morko? (2005). "A Comprehensive Review of ZnO Materials and Devices." Journal of Applied Physics 98(4): 11-11.
[12] Lin, B., Z. Fu and Y. Jia (2012). "Green Luminescent Center in Undoped Zinc Oxide Films Deposited on Silicon Substrates." Applied Physics Letters 100(15): 943.
[13] Tsao, S. W., T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Chen, C. T. Tsai, Y. J. Kuo, Y. C. Chen and W. C. Wu (2010). "Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors." Solid State Electronics 54(12): 1497-1499.
[14] Nomura, K., T. Kamiya, H. Ohta, M. Hirano and H. Hosono (2008). "Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O2 annealing." Applied Physics Letters 93(19): 488.
[15] Shi, J., H. Ma, G. Ma, H. Ma and J. Shen (2008). "Structure and ultrafast carrier dynamics in n-type transparent Mo:ZnO nanocrystalline thin films." Applied Physics A 92(2): 357-360.
[16] Ito, M., M. Kon, C. Miyazaki, N. Ikeda, M. Ishizaki, R. Matsubara, Y. Ugajin and N. Sekine (2010). "Amorphous oxide TFT and their applications in electrophoretic displays." Physica Status Solid 205(8): 1885-1894.
[17] Fortunato, E., P. Barquinha, A. Pimentel, L. Pereira, G. Gon?alves and R. Martins (2010). "Amorphous IZO TTFTs with saturation mobilities exceeding 100 cm2/Vs." physica status solidi (RRL) - Rapid Research Letters 1(1): 34-36.
【通聯编辑:王力】