特高含水期驱替倍数量化表征及调整对策
2019-05-16陶光辉李洪生
陶光辉,李洪生,刘 斌
(1.中国石化河南油田分公司,河南南阳473132;2.中国石化河南油田分公司勘探开发研究院,河南郑州450018)
中国陆上大多数油田均已进入高含水、特高含水开发后期[1-4],受储层非均质性及长期注水的影响,特高含水期油藏平面及纵向驱替皆不均衡。以双河油田Ⅷ-Ⅸ油组为例,自1977年12月投入开发以来,先后经历多次井网调整阶段,截止2018年底,该油组采出程度为35.31%,综合含水率为95.11%。目前注水开发中存在的主要问题为:①特高含水期剩余油呈“普遍分布、差异富集”的分布特征,准确识别弱驱富集区剩余油难度较大。②长期注水冲刷导致物性较好的主体部位动用程度较高,且注入水易沿这些区域流动,造成注水利用率较低。③因特高含水期关井、封堵和打塞等原因造成注采井网不完善,现井网对剩余储量控制程度低。针对以上问题,需要评价油藏不同部位的驱替状况,明确剩余油弱驱富集区,精准识别注水强驱替区,提出有针对性的调整对策,完善注采井网,改善注水开发效果。
近年来,中外学者对于油藏均衡驱替研究较多[5-9]。耿正玲等针对多层油藏纵向层间干扰严重的问题,建立了层系重组相关政策界限,提出分层配水和变密度射孔2种优化方法实现纵向均衡驱替[10-11],但对特高含水期油藏注水驱替倍数量化表征研究较少。为此,笔者利用数值模拟方法量化表征了油藏驱替倍数并对其进行了分级评价,在此基础上确定了特高含水期油藏不同部位驱替程度的差异,形成了有针对性的调整对策实现油藏均衡驱替,为改善特高含水期油藏开发效果提供了依据。
1 驱替倍数量化表征方法
特高含水期油藏不同位置驱替状况差异较大,且同一位置不同开发阶段驱替倍数也不相同,而注水驱替状况对剩余油的分布及注水开发效果有着较为重要的影响,因此需要对驱替倍数进行量化表征,为精细化注水挖潜提供依据。常规油藏工程方法只能从宏观上定性分析油藏注水效果,无法满足精细注水的需求;而数值模拟技术可以通过对油藏网格化,从而实现对不同位置注水状况的描述[12],该技术不仅克服了油藏工程方法所存在的弊端,同时从空间和时间上实现了对油藏注水状况的定量化描述。具体表征方法主要为:首先确定出通过任意网格的累积过水量,然后计算网格单元的孔隙体积,该网格的累积过水量与孔隙体积的比值即驱替倍数。采用Eclipse软件直接输出网格单元的孔隙体积。因此,计算驱替倍数的关键在于计算网格单元的累积过水量。网格单元累积过水量的具体计算方法以(i,j)网格为例(图1)。首先利用Eclipse软件直接输出每个时间步长下该网格块在BFLOWI+和BFLOWJ+方向的流量,计算网格的瞬时过水量只需统计流入该网格的流量,若BFLOWI(i,j)<0,表明有水流入(i,j)网格,流量大小为BFLOWI(i,j)的绝对值,否则不予统计流量大小;若BFLOWI(i-1,j)>0,表明有水流入(i,j)网格,流量大小为BFLOWI(i-1,j)的绝对值,否则也不予统计。J方向采用相同的处理方法,将I,J方向统计的流量大小相加即得到(i,j)网格的瞬时过水量,对所有时间步长的瞬时过水量累加求和即求得(i,j)网格的累积过水量,除以该网格的孔隙体积即得到该网格的驱替倍数。
图1 网格单元累积过水量的计算方法Fig.1 Calculation method for cumulative water content of grid cells
2 驱替倍数分级评价
在实际油藏中驱替倍数分布差异较大,主流线及近水井区域,驱替倍数可以达到成百上千,而低渗透率部位,注入水难以波及,驱替倍数相对较低,因此需要建立驱替倍数分级评价标准,明确弱驱、强驱的分级界限和判定标准。
2.1 物理模拟
选取双河油田Ⅷ-Ⅸ油组取心井天然岩心(渗透率为271 mD)开展室内水驱油实验,确定不同驱替倍数下的驱油效率。实验用油为双河油田原油和煤油按一定比例配制而成的模拟油,在实验温度为50℃条件下的黏度为7.63 mPa·s;实验用水为双河油田注入污水,总矿化度为4 508 mg/L。实验仪器主要包括:①岩心夹持器;②驱替泵,流量精度为1%;③压力传感器,精度为0.5%;④油水分离器,量程为0~20 mL,分度值为0.05 mL;⑤天平,精度为0.001 g;⑥秒表,分度值为0.01 s。
从不同驱替倍数下驱油效率变化曲线(图2)可以看出,驱油效率随驱替倍数的增大而增加。当驱替倍数小于5时,驱油效率直线上升;继续增大驱替倍数,驱油效率增幅逐渐减缓;当驱替倍数达到20时,驱油效率增幅减小;当驱替倍数大于50后,驱油效率几乎不再增加。
图2 天然岩心不同驱替倍数下驱油效率变化曲线Fig.2 Curve of oil displacement efficiency under differentdisplacement multiple of natural core
2.2 数值模拟
从双河油田Ⅷ-Ⅸ油组已建立的实际油藏数值模拟模型中选取I1(注水井)与P1(采油井)的典型井组模型(图3),井组平均渗透率为300 mD,注入速度设为12%,注采比为1∶1,注采井距为300 m,模拟运行至含水率为99%时,采用驱替倍数量化表征方法计算分析不同网格下的驱替倍数。
图3 注水井I1和采油井P1的典型井组模型Fig.3 Typical well model for water injection well I1 and oil production well P1
2.2.1 驱替倍数与含油饱和度的关系
从典型井组模型不同网格驱替倍数与含油饱和度关系(图4)可以看出,随驱替倍数不断增加,含油饱和度不断降低。当驱替倍数小于5时,含油饱和度降低幅度较大,随后曲线出现拐点,含油饱和度随驱替倍数的增大降低速率逐渐放慢;当驱替倍数达到20时,含油饱和度降幅减小;而当驱替倍数大于50后,继续增大驱替倍数,含油饱和度几乎不再变化。
2.2.2 驱替倍数与采出程度的关系
对比典型井组模型不同网格驱替倍数与采出程度关系(图5)可以看出,随驱替倍数不断增加,采出程度逐渐升高。当驱替倍数小于5时,采出程度增加幅度较大;随后曲线出现拐点,采出程度随驱替倍数的增大上升速率逐渐变缓;当驱替倍数达到20时,采出程度增幅减小;而当驱替倍数大于50后,继续增大驱替倍数,采出程度几乎不再变化。
图4 典型井组模型不同网格驱替倍数与含油饱和度关系Fig.4 Relationship between displacement multiple and oil saturation of different grids in typical well model
图5 典型井组模型不同网格驱替倍数与采出程度关系Fig.5 Relationship between displacement multiple and recovery degree of different grids in typical well model
2.3 分级评价结果
2.3.1 分级评价标准
根据物理模拟及数值模拟结果(表1)可知,当驱替倍数小于5时,含油饱和度降幅为28%~32%,采出程度增幅为35%~40%,此时开发效果较好;当驱替倍数大于50时,含油饱和度降幅为1%~2%,采出程度增幅为1%~2%,含油饱和度和采出程度基本不再变化,属无效注水阶段,开发经济效益极差。因此将驱替倍数小于5时界定为弱驱富集区,通过提高驱替倍数能够有效地改善水驱开发效果。
表1 物理模拟及数值模拟结果Table1 Results of physical simulation andnumerical simulation
2.3.2 驱替倍数分布模式
采用驱替倍数量化表征方法定量计算了双河油田Ⅷ-Ⅸ油组的Ⅷ1-Ⅸ1层驱替倍数分布情况(图6),确定不同级别驱替倍数的分布模式。
图6 双河油田Ⅷ1-Ⅸ1层驱替倍数分布Fig.6 Displacement multiple distribution ofⅧ1-Ⅸ1 layer in Shuanghe Oilfield
弱驱富集区 主要分布在低渗透率部位、井网不完善区、注采分流线及压力平衡区。其中低渗透率部位储层物性差,注入水难以波及,驱替倍数相对较低;井网不完善区由于无井控制,水驱控制程度低,驱替倍数较低;注采分流线及压力平衡区驱替压力梯度低,过水量小,驱替倍数相对较低。
强驱替区 主要分布在油水井注采主流线区域,注入水流经注水井与采油井间的主流线区,过水量较大,驱替倍数相对较高。
高耗水区 主要分布在储层物性较好、有效厚度较大的区域,注入水易沿储层物性好的区域流动,造成该区域采出程度高,剩余油饱和度低,水油比高,进入以水带油的开采模式。
无效注水 主要分布在累积产油量和累积注水量较高的油水井附近,由于长期注水冲刷,导致该区域剩余油饱和度接近残余油饱和度,注入水在地下未起到驱油的效果,直接从采油端采出,造成注水无效循环,开发效果极差。
3 均衡驱替调整对策
3.1 驱替倍数潜力评价
根据驱替倍数分级评价标准(表1),计算分析了双河油田Ⅷ-Ⅸ油组的Ⅷ1-Ⅸ1层不同驱替倍数下的剩余储量分布状况(表2),Ⅷ1-Ⅸ1层剩余地质储量为277.66×104t,弱驱富集区、强驱替区、高耗水区和无效注水条件下的剩余储量分别为84.88×104,129.38×104,43.60×104和19.80×104t,所占总剩余储量的百分数分别为30.57%,46.60%,15.70%和7.13%。
表2 双河油田Ⅷ1-Ⅸ1层不同驱替倍数下的剩余储量分布状况Table2 Distribution of remaining reserves under different displacement multiples ofⅧ1-Ⅸ1 layer in Shuanghe Oilfield
3.2 调整对策
根据驱替倍数分布模式,提出有针对性的调整对策,提高弱驱富集区驱替倍数,改变强驱替区液流方向,注采调配控制高耗水区,封堵调控遏制无效注水,实现均衡驱替,改善开发效果。主要调整对策包括:①针对弱驱富集区,通过加密井网、补孔调层等手段提高驱替倍数,挖掘井间、分流线及井网不完善区域剩余油。②针对强驱替区,通过油井转注、优化注采等措施改变液流方向,扩大注水波及。③针对高耗水区,通过调整注采剖面、注采结构调配,限制注入采出量,控制高耗水。④针对无效注水,通过关井、封堵等手段进行调控,遏制无效注水。
4 实例分析
选取双河油田Ⅷ-Ⅸ油组中油砂体叠合好、储层物性好、注入能力强、具有一定储量规模的Ⅷ1-Ⅸ1层实施均衡驱替先导试验开发。在试验区驱替倍数潜力评价的基础上,提出井网调整优化方案,具体部署见图7,井网调整区驱替倍数分布见图8。
图7 双河油田Ⅷ-Ⅸ油组井网调整部署Fig.7 Adjustment and deployment of well pattern inⅧ-Ⅸoil group of Shuanghe Oilfield
图8 双河油田Ⅷ-Ⅸ油组井网调整区驱替倍数分布Fig.8 Displacement multiple distribution of well pattern adjustment zone inⅧ-Ⅸoil group of Shuanghe Oilfield
试验区具体调整措施包括:①在井网不完善、注采分流线及井间压力平衡区等部位存在弱驱富集区剩余油,通过部署新井、补孔调层等措施提高驱替倍数,共部署新井6口,补孔调层措施9井次;同时提高驱替倍数较低的7个井组的注入能力,共实施7井12层,累积增加注水量为992 m3。②针对投入开发较早且长期产液量较高、含水率较高的油井,通过转注的方式改变液流方向,共实施油转注井9口,液流方向改变率达到64.6%。③针对驱替倍数较高、耗水量较大的5个井组降低注水能力,共实施5井9层,注入量由230 m3/d降低到105 m3/d。④利用关井、封堵等措施对无效注水的井层进行调控,实现有效注水,共封堵5井9层。
Ⅷ1-Ⅸ1层井网调整优化方案现场实施后试验区开发形势明显好转,日产油水平由9.3 t/d增加至27.1 t/d,综合含水率由97.29%下降至95.66%,采油速度由0.12%提高至0.36%,增加可采储量为3.94×104t,按井网实际控制储量(275.5×104t)计算,提高水驱采收率1.43%,取得了较好的开发效果。
5 结论
针对特高含水期油藏存在驱替不均衡的问题,创新性地提出了特高含水期驱替倍数量化表征方法,根据驱替倍数与剩余油饱和度、驱替倍数与采出程度的关系对驱替倍数进行分类评价,将特高含水期油藏分为弱驱富集区、强驱替区、高耗水区和无效注水等4个区域,并明确了不同区域的分类判别标准,在此基础上形成了提高弱驱富集区驱替倍数、改变强驱替区液流方向、注采调配控制高耗水区、封堵调控遏制无效注水等均衡驱替技术对策,为特高含水期油藏改善注水开发效果提供了依据。