奔驰S400混合动力介绍(上)
2019-04-28福建林宇清
◆文/福建 林宇清
梅赛德斯-奔驰S400 HYBRID基于上一代S350(即221车型)研发而成,本文通过新旧两款S400车型简要说明该混合动力概念及其工作原理。
一、221车型混合动力概念
车型的S400 HYBRID技术,奠定了梅赛德斯-奔驰混合动力的基础,是本文的重点介绍部分,通过以下几个方面来阐述。
1.驱动系统组成
S400HYBRID配备了平行混合动力驱动系统,包括272混合动力发动机和高电压系统,其中,高压电系统由电力电子控制单元、电动机、高压蓄电池模块、蓄电池管理系统(BMS)控制单元和 DC/DC转换器组成(图1)。
图1 混合动力部件
通过该驱动系统,内燃机、电动机和驱动轮通过刚性相连(图2),其中,发动机和电动机提供的功率可以组合在一起,但车辆无法完全通过电子驱动系统驱动。
2.高压部件介绍
根据前述的高压电系统组成部件,如下逐一进行介绍。
(1)高压蓄电池
图2 驱动概念
位于引擎室右后侧(图3),内部由35块锂离子电池组成,每块电池的电压均在3.2~4.1V之间,这样,高压蓄电池会储存电能并以约120V的电压为所有高压系统部件供电。所有的锂电池由蓄电池管理系统(BMS)控制单元根据传感器和CAN信号进行管理。此外,BMS控制单元在必要情况下还会促动保护开关,以便将高压蓄电池的正极和负极绝缘。
图3 高压蓄电池
(2)DC/DC转换器
直流/直流转换器位于右前轮罩内侧(图4),作为变压器,将高压蓄电池和12V蓄电池相连,实现高压直流电与低压直流电之间的相互转换。
图4 DC/DC转换器
(3)电力电子模块
位于右侧排气歧管下方(图5),控制电动机的工作,即:在启动和起步阶段,通过三相交流电促动电动机;在发电模式下,将产生的三相交流电转换为直流电压,然后对高压蓄电池充电,其实质是交流/直流(AC/DC)转换器。此外,还执行自诊断功能,并通过评估温度传感器的信号,时刻监测电动机的工作温度。
图5 电力电子模块
(4)电动机
采用步进电机设计(图6),位于发动机与变速器之间,不仅具有启动机的作用,还可作为发电机为高压系统充电,因而被称为启动机-发电机。电动机根据工作分为启动和发电模式:沿曲轴转动方向施加扭矩,以启动内燃机,并在起步过程中,电动机为内燃机提供支持;在制动过程中,沿曲轴转动方向的反方向施加扭矩,回收部分制动能量,并将其转化为电能(再生制动),以对高压蓄电池充电。两种工作模式均由电力电子模块控制。集成的温度传感器记录定子线圈的温度,并将信号传给电力电子模块分析,避免电动机过热损坏。此外,电动机还具有减震元件的作用,以降低行驶/扭转振动。
(5)空调压缩机
图6 电动机
为确保在发动机自动停机时空调系统能提供足够的冷却,压缩机从发动机上分开,采用电动驱动,实现对车厢内部和高压电瓶进行单独的恒温控制和冷却(图7)。电动压缩机主要由集成式控制单元、电机和螺旋压缩机组成。控制单元调节电机的转速以及制冷剂数量,电机驱动压缩机。压缩机由两个交织的螺旋组成,其中一个与外壳永久连接,另一个则在第一个螺旋内的圆周内旋转,这样,在螺旋内形成多个不断增加的较小空间,制冷剂随后进入这些空间, 最高到达中央, 然后在中央以压缩状态排出。该设计有助于优化燃油消耗量,此外,空调控制单元可在700~9 000r/min的转速区间内对压缩机进行无级调节。
图7 电动压缩机
3.工作模式
根据车辆的使用状况,对驱动系统的工作,可分为以下若干模式来理解。
(1)驱动模式
车辆的驱动可通过内燃机(标准模式)或混合动力模式来实现。当混合动力系统识别到故障而导致混合动力模式无法使用时,如果发动机可提供足够的扭矩,那么车辆将启用标准模式。在混合动力模式起作用时,发动机扭矩与电动机扭矩相结合,驱动车辆,该模式取决于高压电瓶的电量。此外,内燃机可将电动机作为高压发电机操作。
(2)发电模式
在发电机模式下,电动机扮演着高压发电机的作用,曲轴的旋转运动作用在电动机转子上,然后在定子线圈中感应出三相交流电,由电力电子模块转换为直流电后对高压蓄电池充电。在该模式中,车辆的动力由内燃机提供。
(3)减速模式
当车辆在滑行时,电动机将动能转化为电能,即“再生”阶段,ME根据当前的路面状况、高压电量和变速器模式计算出相应的减速扭矩,据此进行再生减速和减速燃油切断。在这种情况下,内燃机产生减速扭矩,它与再生减速扭矩加起来可能超过标准的减速扭矩,此时,内燃机产生最小的可控扭矩,并且不会激活减速燃油切断。另外,不论是否激活减速燃油切断,对驾驶员而言,驱动系统的表现是相同的。
4.能量和动力流
各模式工作期间的能量流和当前的高压电量可显示在仪表盘上,当混合动力系统开始工作时,仪表会显示“READY”(就绪)信息(图8)。如果ECO启动-停止功能可用,那么READY 指示灯呈现绿色的;如果ECO功能暂时不可用,则READY 指示灯点为黄色的。
图8 仪表盘显示
混合动力的动力流可显示在COMAND显示屏上(图9),在驱动模式下,动力由发动机传递至后轴,即动力仅由发动机提供;在加速模式下,高压蓄电池通过电力电子模块向电动机供电,使电动机产生驱动扭矩,对发动机提供支持,这样,动力由发动机和电动机流至后轴。在发电模式下,电动机作为高压发电机,将车辆的动能转化为电能,动力从后轴传递电动机。
图9 动力流(加速模式)
5.再生制动
再生是指在车辆减速过程中,为回收能量将动能转化为电能,从而对高压蓄电池充电。再生制动功能由制动踏板与助力器推杆之间的一段自由行程来执行,代表制动请求的踏板行程由踏板角度传感器记录,然后由再生制动系统(RBS)控制单元分析,据此在每次促动制动器时,踏板阻力模拟器都会产生虚拟的踏板阻力(图10)。当再生制动启用时,自由行程会随着再生制动扭矩的增加而变短,为此,RBS控制单元促动相应的电磁阀,从而促使助力器增大液压制动器的压力,确保自由行程不会变短。如果RBS系统出现故障,那么阻力模拟器停用,然后驾驶员将并通过脚力产生所需的制动力,即踏板行程会比正常的行程略微增长。
图10 功能原理
RBS控制单元将制动踏板行程的总制动扭矩分为再生制动扭矩和液压制动扭矩,两种扭矩分别由传动系统和车轮制动器来执行。电动机回收部分或全部制动扭矩,用于发电,然后存储在高压蓄电池中(图11)。如果产生的再生制动扭矩达到制动踏板请求的总制动扭矩,那么就不会产生液压制动扭矩,这样,通过再生方式即可实现减速。如果高压蓄电池已是充满电状态,那么再生制动扭矩将无法产生,此时车辆只能通过液压方式制动,直到高压蓄电池放电并能存储电能。此外,在ABS系统起作用时,再生制动会结束,制动扭矩仅通过液压方式提供。
图11 再生制动的功能原理
(未完待续)