APP下载

爱因斯坦场方程研究

2019-04-20王学仁

哈尔滨理工大学学报 2019年1期

王学仁

摘要:我们将介绍我们的工作:①把9个关联系数分成两组:涉及 (线加速度)的A组包括Γ 0 01 ,Γ 1 00 , Γ 1 11 , Γ 1 22 , 和 Γ 1 33 ;不涉及的B组包括Γ 2 12 , Γ 2 33 , Γ 3 13 , 和 Γ 3 23 。②回顧关系式() r=() Nγ 3,这里() r是相对论力学中的线加速度,() N是牛顿力学中的线加速度,γ是洛伦兹因数。③我们已经确定(Γ 0 01 ) N=-b ′b -1 ,(Γ 1 00 ) N=-c 2b ′b -5 ,(Γ 1 11 ) N=b ′b -1 ,(Γ 1 22 ) N=-rb -2 ,(Γ 1 33 ) N=-rb -2 sin 2θ。④我们已经确定(Γ 0 01 ) r=(-b ′b -1 )γ 3, (Γ 1 00 ) r=(-c 2b ′b -5 )γ 3,(Γ 1 11 ) r=(b ′b -1 )γ 3,(Γ 1 22 ) r=(-rb -2 )γ 3,(Γ 1 33 ) r=(-rb -2 sin 2θ)γ 3。⑤我们已经证明Γ 0 01 =A ′/(2A)= -b ′b -1 , Γ 1 00 =A ′/(2B)=-c 2b ′b -5 ,Γ 1 11 =b ′/(2B)=b ′b -1 ,Γ 1 22 =-rb -1 =-rb -2 ,Γ 1 33 =-rb -1 sin 2θ=-rb -2 sin 2θ。(6)我们已经确定(Γ 1 12 ) N r=r -1 ,(Γ 2 33 ) N r= sin θ cos θ,(Γ 3 13 ) N r=r -1 ,(Γ 3 23 ) N r= cot θ。⑥我们分析了 Schwarzschild 解并得出两个结论:( a )B =(1-2GM/(c 2r)) -1 =(1- r· 2/c 2) -1 =γ 2,这表明它和牛顿守恒定律有关。( b )对于弱引力场GM/(c 2r)1, B=(1-2GM/(c 2r)) -1 ≈ 1+ 2GM/(c 2r)≈1+2GM/(c 2r)+(GM/(c 2r)) 2=(1+GM/(c 2r)) 2=γ 2,因此,γ=1+GM/(c 2r)=b,这个关系式对强引力场也适用。把这些需要的表达方式带入方程式,并应用关系式,我们能简化方程式。我们已经得到了相对论解:-c 2 d τ 2=c 2(1+GM/(c 2r)) -2 d t 2-(1+GM/(c 2r)) 2 d r 2-r 2 d θ 2-r 2 sin 2θ d φ 2 .

关键词:广义相对论;场方程;引力理论

DOI:10.15938/j.jhust.2019.01.024

中图分类号: O412.1

文献标志码: A

文章编号: 1007-2683(2019)01-0145-04

A Study of Einstein Field Equation

WANG Xue ren

(School of Applied Science, Harbin University of Science and Technology, Harbin 150080, China)

Abstract:

In this paper we present our research work: ①We divide 9 connection coefficients into two groups: Group A involving  (the linear acceleration) includes Γ 0 01 ,Γ 1 00 , Γ 1 11 , Γ 1 22 , and Γ 1 33 ; Group B not involving  includes Γ 2 12 , Γ 2 33 , Γ 3 13 , and Γ 3 23 . ②Recalling the relation formula: () R=() Nγ 3 , where () R is the linear acceleration in relativistic mechanics, () N the linear acceleration in Newtoneon mechanics, and γ Lorrentz factor. ③We have determined that (Γ 0 01 ) N= -b ′b -1 , (Γ 1 00 ) N= -c 2b ′b -5 , (Γ 1 11 ) N= b ′b -1 , (Γ 1 22 ) N= -rb -2 , (Γ 1 33 ) N= -rb -2 sin 2θ . ④We have determined that (Γ 0 01 ) R = (-b ′b -1 )γ 3, (Γ 1 00 ) R = (-c 2b ′b -5 )γ 3, (Γ 1 11 ) R = (b ′b -1 )γ 3, (Γ 1 22 ) R = (-rb -2 )γ 3, (Γ 1 33 ) R = (-rb -2 sin 2θ)γ 3 . ⑤We have proved that Γ 0 01 =A ′/(2A)=-b ′b -1 , Γ 1 00 = A ′/(2B) = -c 2b ′b -5 , Γ 1 11 = B ′/(2B) = b ′b -1 , Γ 1 22 = -rB -1 = -rb -2 ,Γ 1 33 = -rB -1 sin 2θ= -rb -2 sin 2θ . (6)We have determined that (Γ 1 12 ) N R = r -1 , (Γ 2 33 ) N R = sin θ cos θ, (Γ 3 13 ) N R= r -1 , (Γ 3 23 ) N R = cot θ . ⑥We have analyzed Schwarzschild solution, and drawn two conclusions: (a) B=(1-2GM/(c 2r)) -1 = (1- r· 2/c 2) -1 = γ 2 , indicating that it involves Newtoneon formula of energy conservation. (b)In the case of the weak gravitational field, GM/(c 2r)1, B = (1-2GM/(c 2r))  -1 ≈ 1 + 2GM/(c 2r) ≈ 1 + 2GM/(c 2r) + (GM/(c 2r)) 2 = (1+GM/(c 2r)) 2 = γ 2 , therefore, γ= 1 + GM/(c 2r) = b , it holds too, in the case of the strong gravitational field. (8)Substituting the needed expressions into equations, and applying the relation formulas, we can simplify the equations, Obtaining the relativistic solution:

-c 2 d τ 2 = c 2(1+GM/(c 2r)) -2 d t 2 - (1+GM/(c 2r)) 2 d r 2-r 2 d θ 2-r 2 sin 2θ d φ 2

Keywords:general relativity; field equation; gravitational theory

0Introduction

Schwarzschild solution for Einstein field equation has made an important contribution to development of general relativity, but we should point out Schwarzschild solution belongs to Newtonian mechanics, and it is suitable only to the weak gravitational field, but not suitable to the strong gravitational field. In this paper we will give sufficient basis for this conclusion.

1Classification of connection coefficients

We divide 9 connection coefficients into two groups: group A involving  (the linear acceleration), see Table1; group B not involving  , see Table 1 and 2.

Table1. Group A involving

Γ 0 01 (=A ′/(2A)=-B ′/(2B)) = -Γ 1 11 = /(r·r·), Γ 1 00 = -/( t ·t·), Γ 1 11 =-/(r·r·), Γ 1 22 =-/(θ ·θ ·),Γ 1 33 =-/(φ·φ·)

Table2. Group B not involving

Γ 2 12 =-θ ¨/(r·θ ·), Γ 2 33 =-θ ¨/(φ·φ·), Γ 3 13 =-/(r·φ·), Γ 3 23 =-/(θ ·φ·)

2 R= Nγ 3

R is linear acceleration in relativistic mechanics, N is linear acceleration in Newtoneon mechanics, the relation formula between  R and  N is as below (references[2], P38)

R= Nγ 3 (1)

where γ is Lorentz factor. So that the expressions of group A in two kinds of mechanics are different.

3The expressions of group A in Newtonian mechanics

Example 1: Determine the expression of (Γ 1 11 ) N .

Solution: From -c 2 d τ 2 = -b 2 d r 2 (see line element Exp. (4))

r·=cb -1 . From  N+ (Γ 1 11 ) N(r·r·)=0 ,we can get

(Γ 1 11 ) N = - d r d τ d r· d r/(r·(cb -1 ))=-(r·(-cb -2 b ′)/(r·(cb -1 ))=b ′b -1 .

Following Example 1, we can obtain Table 3.

Table 3. The expressions of Group A in Newtonian mechanics

(Γ 0 01 ) N=-b ′b -1 , (Γ 1 00 ) N=-c 2b ′b -5 , (Γ 1 11 ) N=b ′b -1 , (Γ 1 22 ) N=-rb -2 , (Γ 1 33 ) N=-rb -2  sin  2θ.

4The expressions of group A in relativistic mechanics

Example 2: Determine the expression of  (Γ 1 11 ) R .

Solution: From  () R+ (Γ 1 11 ) R(r·r·)=0 we can get  (Γ 1 11 ) R=- () R/(r·r·)=γ 3(- N/(r·r·)= (Γ 1 11 ) Nγ 3 .

Following Example 2 we can obtain Table 4.

Table4. The expressions of group A in relativistic mechanics

(Γ 0 01 ) R=(-b ′b -1 )γ 3, (Γ 1 00 ) R=(-c 2b ′b -5 )γ 3, (Γ 1 11 ) R=(b ′b -1 )γ 3,

(Γ 1 22 ) R=(-rb -2 )γ 3, (Γ 1 33 ) R=(-rb -2  sin  2θ)γ 3

5Group A used in Schwarzschild solution

Example 3. Prove Γ 1 00 =A ′/(2B)= -c 2b ′b -5

Proof.

Γ 1 00 = A ′/(2B)= (c 2B -1 ) ′/(2B)= (c 2b -2 ) ′/(2b 2)=-2c 2b -3 b ′/(2b 2)=-c 2b ′b -5

Following Example 3 we can obtain Table 5.

Table 5. Equivalence

Γ 0 01 =A ′/(2A)=-b ′b -1 , Γ 1 00 =A ′/(2B)= -c 2b ′b -5 ,

Γ 1 11 =B ′/(2B)=b ′b -1 , Γ 1 22 =-rB -1 =-rb -2 ,

Γ 1 33 =-rB -1  sin  2θ=-rb -2  sin  2θ

6The expression of Group B

The expressions of group B in two kinds of mechanics have no difference. See Table 6.

Table 6. The expression of group B

(Γ 2 12 ) N R=r -1 , (Γ 2 33 ) N R= sin θ cos θ, (Γ 3 13 ) N R=r -1 , (Γ 3 23 ) N R= cot θ

7Analyzing Schwarzschild Solution

Schwarzschild solution is a very important result in general relativity, practice has proved that it is suitable for the weak gravitational field very well.

As a part of Schwarzschild solution B = (1-2GM/(c 2r))  -1  is related closely with Lorentz factor,

γ 2= (1- r· 2/c 2)  -1 = (1-2GM/(c 2r))  -1 =B=b 2

It is very clear that Schwarz Schild solution involves a Newtoneon formula of energy conservation.

r· 2/2=GM/r (2)

In the case of the weak gravitational field, GM/(c 2r)<<1,

b 2=B= (1-2GM/(c 2r))  -1 ≈1+2GM/(c 2r)≈

1+2GM/(c 2r))+ (GM/(c 2r)) 2= (1+GM/(c 2r)) 2=γ 2

That is

γ=1+GM/(c 2r)=b (3)

Form. (3) holds still in the case of the strong gravitational field.

8Solving Einstein field equation

Line element is expressed as below:

-c 2 d τ 2=a 2(r) d t 2-b 2(r) d r 2-r 2 d θ 2-r 2 sin  2θ d φ 2 (4)

In the following we will write a(r) and b(r) as a and b. The relation formulas between a and b are as following:

ab=c

a ′b+ab ′=0 (5)

Einstein field equation can be written as below:

R μν = νΓ σ μσ - σ Γ σ μν +Γ ρ μσ Γ σ ρν -Γ ρ μν Γ σ ρσ =0 (6)

Eq. (6) can be rewritten as following:

R 00 =- rΓ 1 00 +Γ 1 00 (Γ 0 01 -Γ 1 11 )-Γ 1 00 (Γ 2 12 +Γ 3 13 )=0

R 11 = rΓ 0 01 +Γ 0 01 (Γ 0 01 -Γ 1 11 )-Γ 1 11 (Γ 2 12 +Γ 3 13 )=0

R 22 =- rΓ 1 22 + θ Γ 3 23 +Γ 3 23 Γ 3 23 =0 (7)

Substituting the needed expressions of Tables 4 and 6 into Eq. (7), we obtain:

R 00 =c 2b ″b -5 γ 3-c 2b ′b -5 γ 5 (5b ′b -1 γ-3γ ′-2b ′b -1 γ)+2c 2b ′b -5 γ 3r -1 =0

R 11 =-b ″b -1 γ 3+b ′b -1 γ 4 (b ′b -1 γ 2-3γ ′γ+2b ′b -1 γ 2)-2b ′b -1 γ 3r -1 =0

R 22 = (rb -2 γ 3) ′-1=0 (8)

Applying γ= b (Form. 3), Eqs. (8) can be simplified as:

b ″+2b ′r -1 =0

b ″+2b ′r -1 =0

(rb) ′-1=0. (9)

From Eq.(9) we can get

b=1+C/r (10)

Comparing Exp.(10) with Form. (3) we can determine:

C=GM/c 2 ,

so that

b(r)=1+GM/(c 2r) (11)

using relation Form (5a) we can get

a(r)=c (1+GM/((c 2r))  -1 (12)

The relativistic solution can be expressed as

-c 2 d τ 2=c 2 (1+GM/(c 2r))  -2 d t 2- (1+GM/(c 2r)) 2 d r 2-r 2 d θ 2-r 2 sin  2θ d φ 2. (13)

Appendix A.Schwarzschild Solution

Line element can be written as below:

-c 2 d τ 2=A(r) d t 2-B(r) d r 2-r 2 d θ 2-r 2 sin  2θ d φ 2 (A1)

In the following we will write A(r) and B(r) as A and B . Therelation formulas between A and B as following:

AB=c 2 (A2a)

A ′B+Ab ′=0 (A2b)

The expressions of connection coefficients are as below:

Γ 0 01 =A ′/(2A)=12A ′A -1 , Γ 1 00 =A ′/(2B)=12c 2A ′A,

Γ 1 11 =B ′/(2B)=-12A ′A -1 , Γ 1 22 =-rB -1 =-c -2 rA,

Γ 1 33 =-rB -1  sin  2θ=-c 2rA sin  2θ (A3a)

Γ 2 12 =r -1 , Γ 1 33 = sin θ cos θ, Γ 3 13 =r -1 , Γ 3 23 = cot θ (A3b)

Substituting the needed expressions in (A3a) and (A3b) into Eqs. (7), ones can obtain:

R 00 =- r(12c -2 A ′A)+(12c -2 A ′A)(12A ′A -1 -(-12A ′A -1 ))-(12c -2 A ′A)(r -1 +r  -1 )=0 (A4a)

R 11 = r(12A ′A -1 )+(12A ′A -1 )(12A ′A -1 -(-12A ′A -1 ))-(-12A ′A -1 )(r -1 +r  -1 )=0 (A4b)

R 22 =- r(-rA/c 2)+ θ cot θ+ cot θ cot θ=0 (A4c)

Eqs.(A4a)~(A4c)can be simplified as

A ″+2A ′r -1 =0 (A5a)

A ″+2A ′r -1 =0 (A5b)

(rA) ′/c 2-1=0 (A5c)

From Eq. (A5c) ones can get

A=c 2(1+C/r).

Analyzing the gravitational field, a conclusion is given ([1], p.121)

h 00 =-2GM/(c 2r)=C/r,

So that

C =-2GM/c 2,

A(r)=c 2(1-2GM/(c 2r)) (A6a)

Applying relation Form. (A2a), ones can get

B(r)= (1-2GM/(c 2r))  -1 (A6b)

Therefore Schwarzschild solution can be written as

-c 2 d τ 2=c 2(1-2GM/(c 2r)) d t 2- (1-2GM/(c 2r))  -1 d r 2-r 2 d θ 2-r 2 sin  2θ d φ 2 (A7)

References:

[1]FOSTER J., Nightingale J.D.A short Course in General Relativity[M]. SecondEdition. 1995. New York: Springer Verlag, Chaps 2, 3.

[2]RINDLER W. Introduction to Special Relativity[M]. Oxford: Clarendon press,1982.