西藏多龙矿集区热构造演化历史
——来自磷灰石(U-Th)/He的证据*
2019-04-04杨欢欢宋扬
杨欢欢 宋扬
1. 中国地质科学院矿产资源研究所,自然资源部成矿作用与资源评价重点实验室,北京 1000372.
图1 西藏羌塘盆地质图(据Zhang et al., 2012 修改)Fig.1 Geological map of the Qiangtang Basin in Tibet (after Zhang et al., 2012)
羌塘地块是青藏高原研究的重要构造单元,位于青藏高原腹地,北部以羊湖-金沙江缝合带为界,南部以班公湖-怒江缝合带为界,龙木错-双湖-澜沧江缝合带自东向西贯穿羌塘中部,将羌塘地块分为南羌塘和北羌塘(图1)。前人研究认为南羌塘和拉萨地块来自冈瓦纳古陆,而北羌塘来自欧亚大陆(李亚林等, 2008)。多龙矿集区位于南羌塘南缘,由多个斑岩型、浅成低温热液-斑岩型矿床组成,区内的铁格隆南矿床是西藏首例斑岩-浅成低温热液型矿床。目前整个矿集区探明铜资源量大约20Mt,Cu品位为0.5%,金资源量388t,Au品位为0.13g/t,成为羌塘地区乃至西藏最重要的铜(金)矿集区之一。羌塘地块形成之后,受到多期次构造事件的影响,经历多次隆升作用,其中拉萨地块和南羌塘地块碰撞事件以及印度-欧亚大陆碰撞事件对羌塘地块的变形过程产生了巨大的影响(Kappetal., 2005, 2007; Wangetal., 2002, 2011, 2012; Murphyetal., 1997; Yin and Harrison, 2000; Aitchisonetal., 2007; 王立成和魏玉帅, 2013)。多龙矿集区形成于羌塘地块的剧烈变形时期,矿集区的隆升-剥蚀历史对矿床保存至关重要。前人对多龙矿集区内多不杂斑岩型铜(金)矿床、波龙斑岩型铜(金)矿床、铁格隆南斑岩-浅成低温热液型铜(金)矿床、拿若斑岩型铜(金)矿床、地堡那木岗、拿顿、色那、赛角、尕尔勤铜金矿床(点)进行了深入的研究(Lietal., 2014; 唐菊兴等, 2014, 2016; 方向等, 2014; 杨超等, 2014; Linetal., 2017; 林彬等, 2016),但多集中在矿床的成因方面,矿床形成后的变化、改造、保存过程的研究鲜少报道。磷灰石(U-Th)/He数据可以限制岩石的冷却年龄,被广泛应用于盆地的低温热历史的重建(Donelicketal., 2005)以及造山带的隆升-剥蚀历史研究(Reiners and Brandon, 2006; Wagner and Van den haute, 1992; Gallagheretal., 1998)。本文利用磷灰石(U-Th)/He数据进行多龙矿集区的低温年代学研究,模拟热-构造历史,旨在重建多龙矿集区斑岩-浅成低温热液型矿床形成后的埋藏-剥蚀历史。
图2 多龙矿集区地质图(a)和铁格隆南矿床钻孔布置图(b)Fig.2 The geological map of the Duolong ore district (a) and sites of drill holes in the Tiegelongnan ore deposit (b)
1 矿集区地质背景
多龙矿集区位于班公湖-怒江结合带北侧,南羌塘增生弧盆系和扎普-多不杂岩浆弧内(耿全如等, 2011; 潘桂棠等, 2004)。区内出露地层主要为上三叠统日干配错组(T3r)、下侏罗统曲色组(J1q)、中-下侏罗统色哇组(J1-2s)、下白垩统美日切错组(K1m)、上渐新统康托组(E3k)和第四系(Q)(图2)。其中下侏罗统曲色组(J1q)、中-下侏罗统色哇组(J1-2s)为矿集区内多不杂、波龙、铁格隆南、拿若、地堡那木岗、拿顿、尕尔勤等矿床(点)的含矿围岩。曲色组(J1q)为次深海陆棚-盆地斜坡复陆碎屑岩-类复理石建造,主要岩性为长石石英砂岩、粉砂岩夹硅质岩、灰绿色玄武岩、英安岩等;色哇组(J1-2s)为深灰色、灰色薄层状粉砂岩、中层长石石英砂岩、石英砂岩与灰白色薄层状泥质板岩护层。上三叠统日干配错组(T3r)为灰岩, 下白垩统美日切错组(K1m)为安山岩、火山角砾岩、安山质玄武岩,上渐新统康托组(E3k)为紫红色砂砾石层、砾岩、含砾砂岩。区内断裂构造显著,主要发育有三组,包括早期近EW向断裂构造F1、F2、F3,后期NE向断裂F8、F10、F11、F12、F13,以及晚期NW向断裂F4、F5、F6、F7。几组构造构成菱形格架(图2),其中NE向断裂为主要的控岩构造,多数含矿斑岩体沿该方向断裂呈NE向分布,矿集区内多不杂、波龙、铁格隆南、拿若、地堡那木岗、拿顿、赛角矿床(点)就呈NE向分布。区内岩浆活动频繁,总体上以喷发、喷溢及超浅成侵入为主,基性、中酸性、酸性岩浆岩均有出露。除中侏罗统沉积地层中发育少量的辉长岩、辉绿岩以及枕状玄武岩外,区域岩浆岩主要为早白垩世的中酸性侵入岩(花岗闪长岩、闪长玢岩、花岗斑岩、二长花岗斑岩等),是区域主要的成矿和容矿岩体。同时,区域还发育一套重要的早白垩世的陆相火山岩,美日切错组玄武质安山岩、安山岩、安山玢岩、流纹岩,其对区域成矿后的保存具有重要的作用。
表1采样位置、高程、岩性以及采样地层年龄数据表
Table 1 Sample location, elevation, petrology and stratigraphic age
样品号深度(m)北纬东经岩性和地层沉积年龄DL2014-88032°52′10″83°29′56″安山岩;早白垩世DL2014-96032°52′06″83°31′54″凝灰岩;早白垩世DBZ-GS01032°50′39″83°27′20″安山岩;早白垩世DL2014-20032°49′35″83°26′18″辉长岩;早白垩世DL2014-61032°46′48″83°14′51″闪长玢岩;早白垩世DL2014-55032°51′00″83°36′23″砂岩;早侏罗世ZK3204-B1032°52′35″83°30′34″安山岩;早白垩世ZK2420-72.7572.632°52′22″83°30′33″安山岩;早白垩世ZK1620-16816832°52′22″83°30′19″安山岩;早白垩世ZK3228-507.850832°52′15″83°30′34″闪长岩;早白垩世ZK4804-1159.7116032°52′34″83°30′50″花岗闪长岩;早白垩世
2 采样及分析方法
样品主要采自多龙矿集区的多不杂、 地堡那木岗、铁格隆南地表以及铁格隆南矿床钻孔中(图2)。样品岩性包括安山岩、辉长岩、凝灰岩、闪长玢岩、花岗闪长岩、砂岩。采样位置及高程通过GPS获得,详细的采样位置、高程和岩性如表1所示。岩石样品经过加工后,用矿砂摇床进行粗选富集。所得重矿物先用磁铁进行强磁选,再用多用磁性分析仪电磁选。电磁选后的非磁选矿物根据具体情况选择机械精淘或微型床分选。机械精淘后的重矿物用矿物介电分选仪分选(用四氯化碳加无水乙醇作介电液,电极析出磷灰石)。用微型摇床分选后的重矿物,先用三溴甲烷液分选,然后用二碘甲烷重液分选。最后通过双目镜进行检查,挑选出其他杂质和矿物,最终挑选纯度大于99%,单矿物挑选在河北廊坊岩矿测试加工中心完成。然后送磷灰石单矿物样品进行(U-Th)/He定年。
磷灰石的(U-Th)/He低温热年代学测试由澳大利亚科廷大学的实验人员完成。(U-Th)/He同位素体系定年结果受到辐射损伤、晶体尺寸、颗粒内部U、Th元素分带等因素的影响(Flowers, 2009; Shusteretal., 2006; Reiners and Farley, 2001),因此选择合适磷灰石颗粒对实验的结果异常重要。在双目镜下挑选磷灰石的单颗粒,去除含有裂纹或者富U和Th包体的锆石颗粒,对所选颗粒进行照相并计算表面和体积参数以便计算α校正值(Ft)。将矿物颗粒装入铂微型坩埚,用1064nm Nd-YAG激光照射和照射,将He从单颗粒中热萃取出来。3He尖峰同位素稀释法测定4He丰度,每天用独立的4He标准箱对其进行校正,样品中测量的4He误差<1%。用ID-ICP-MS利用235U和230Th尖峰测定U和Th的含量。每个样品中加入25μL的含有15×10-9 235U和5×10-9230Th的50%(体积约为7M)HNO3溶液。磷灰石在加标酸中处理至少12h,以使加标和样品同位素平衡。25μL的标样溶液含有27.6×10-9的U和28.4×10-9的Th,作为一系列未经测试的试剂空白(仅有25μL的HNO3)进行处理。添加250μL Milli-Q水,在Agilent7500cs ICP-MS上进行分析。实验测得磷灰石精度为2.5%,更多U和Th的测试方法见Evansetal. (2005)。
3 分析结果
本次研究所使用的磷灰石(U-Th)/He(AHe)的分析数据如表2所示,为了确保磷灰石(U-Th)/He数据的准确性,剔除每组样品的单颗粒年龄值中的异常值。样品DL2014-88的四个磷灰石颗粒的AHe年龄为77.7±3.8Ma到89.6±4.3Ma,年龄平均值为82.9±5.4Ma;样品DL2014-96的四个磷灰石颗粒的AHe年龄分布为47.9±2.1Ma到63.1±2.9Ma,年龄平均值为53.8±2.7Ma;样品DBZ-GS01的四个磷灰石颗粒的AHe年龄分布为80.8±3.8Ma到89.5±3.6Ma,年龄平均值为85±4Ma;样品ZK2420-72.75的四个磷灰石颗粒的AHe年龄分布为54.5±2.6Ma到63.5±2.7Ma,年龄平均值为58.5±2.6Ma;样品DL2014-20的两个AHe年龄分布为64.1±3.7Ma到77.3±8.1Ma,年龄平均值为70.7±5.9Ma;样品DL2014-61的两个磷灰石颗粒的AHe年龄分布为39.1±11.4Ma到44.3±8.1Ma,年龄平均值为41.7±9.8Ma;样品DL2014-55的两个磷灰石颗粒的AHe年龄分布为63.5±3.1Ma到71.3±5.1Ma,年龄平均值为67.4±4.1Ma。样品ZK3204-B1、ZK1620-168、ZK3228-507.8、ZK4804-1159.7年龄数据引自Yangetal. (2019, under review)。多龙矿集区磷灰石(U-Th)/He年龄平均值分布范围为37.9±2.5Ma到85.1±4.0Ma。
表2西藏多龙矿集区磷灰石(U-Th)/He分析数据
Table 2 Apatite (U-Th)/He data of the Duolong ore district in Tibet
样品号232Th±238U±4He±TAURaw Age±FtCor. Age±质量(×10-6)(%)(×10-6)(%)(ncc)(%)(%)(Ma)(Ma)(×10-6)DL2014-8850.295.812.3260.87799.960.960.7482.08.54.8778.744.123.744.40.762.23.858.32.20.6589.64.32.53104.484.125.784.41.3194.55.458.73.20.7182.15.13.6564.404.116.634.40.4742.63.9522.10.6777.73.82.34平均值82.95.4DL2014-9650.304.120.724.40.9611.63.538.21.30.7650.12.36.3249.174.123.154.40.6740.63.335.11.10.7347.92.14.5489.314.134.084.50.6165.1635.92.20.6654.23.62.5558.154.128.544.91.3480.63.647.21.70.7563.12.95.54平均值53.82.7DBZ-GS0165.594.147.824.51.33513.755.720.6980.83.83.1085.134.158.746.11.9520.64.763.630.7486.44.83.1819.724.213.854.20.6250.93.465.22.20.7389.53.64.2635.644.118.484.30.2560.93.352.11.70.6283.53.71.52平均值85.14.0ZK2420-72.7547.954.111.784.40.1130.83.133.81.10.6155.42.41.1963.274.114.064.40.1980.6339.51.20.6263.52.71.4250.274.112.574.50.1030.73.135.91.10.5960.72.60.9544.714.111.664.40.152.23.735.51.30.6554.52.61.54平均值58.52.6DL2014-205.967.17.954.40.0228.99.734.23.30.4477.38.10.502.539.85.064.30.0181.14.133.61.40.5264.13.70.79平均值70.75.9DL2014-6115.694.48.724.50.01828.728.919.75.70.5139.111.40.5736.284.215.274.40.0317.617.920.43.70.4644.38.10.52平均值41.79.8DL2014-5568.984.120.624.30.595.86.549.33.20.6971.35.12.6784.014.123.764.40.5522.53.9441.70.6963.53.12.36平均值67.44.1ZK3204-B133.844.18.464.40.14710.310.836.23.90.6853.15.92.0128.874.17.734.40.1268.5936.33.30.6853.45.11.9432.534.18.674.40.1260.83.133.91.10.6750.52.21.84平均值52.34.4ZK1620-16862.664.117.094.40.1740.93.228.30.90.6146.121.5854.924.118.034.70.1181.93.72610.643.32.11.22136.674.130.004.50.2760.73.130.40.90.5852.62.31.20平均值47.32.1ZK3228-507.82.786.324.444.60.1290.74.523.51.10.6436.821.803.749.785.054.90.2464.66.722.11.50.5739.02.91.07平均值37.92.5ZK4804-1159.726.64663.765.90.5870.55.4301.60.6744.62.82.2929.064.211.974.30.0780.53.229.10.90.5849.92.61.1765.424.119.634.30.1170.53.125.80.80.5546.72.31.07平均值47.12.6
注:Ft—α辐射校正(Farleyetal., 1996),假设eU均一分布(无eU分带);Corr date运用Ft校正;U、Th、He和颗粒长度测量的误差为2σ;平均值为分析数据的算术平均值
4 讨论
4.1 磷灰石(U-Th)/He年龄
前人研究表明,多龙矿集区的岩浆岩成岩年龄和铜(金)成矿年龄均大于100Ma(方向等, 2014; 杨超等, 2014; Linetal., 2017; 林彬等, 2016),本次实验测得的磷灰石的(U-Th)/He(AHe)年龄远小于早侏罗世到早白垩世的地层年龄,同时小于区内可以重置AHe年龄的岩浆-热液活动的年龄(~110Ma),表明本文获得磷灰石AHe年龄与研究区的岩浆-热液演化事件无关,而是记录了多龙矿集区地层沉积之后经历的最后一次抬升-冷却事件发生的大致时间。样品DL2014-88、DBZ-GS01、ZK2420-72.75、DL2014-20、DL2014-55的AHe年龄平均值分布在85~58Ma之间,表明多龙矿集区在晚白垩世到古新世经历一次构造抬升事件。样品DL2014-61、DL2014-96、ZK2404-B1、ZK1620-168、ZK3228-507.8、ZK4804-1159.7的AHe年龄平均值集中在53~37Ma之间,记录了多龙矿集区早始新世到晚始新世的构造抬升事件。
图3 多龙矿集区磷灰石(U-Th)/He年龄与采样深度图Fig.3 The plot of apatite (U-Th)/He and locations of samples in the Duolong ore district
图4 正断层热模型示意图(据Ehlers et al., 2001修改)白色圆圈为磷灰石样品最初深度,经历隆升-剥蚀作用出露到地表(粉色圆圈)Fig.4 The schematic map of thermal models of normal fault (after Ehlers et al., 2001)White circles representing the initial depth of apatite samples were uplifted to the surface (pink circles)
图5 多龙矿集区荣那沟断层示意图Fig.5 The schematic map of Rongnagou fault in the Duolong ore district
图6 多龙矿集区温度-时间模拟使用HeFTy软件对多龙矿集区低温热历史进行模拟,模拟过程使用数据包括磷灰石裂变径迹年龄、长度、Dpar值,C-轴夹角值(Yang et al., 2019未发表)以及AHe数据,紫色区域为好的模拟路线;绿色区域为可接受路线;蓝色线为最佳模拟路线,编号Ⅰ-Ⅳ代表多龙矿集区经历的4次抬升冷却事件Fig.6 The inverse modeling of the Duolong ore district The HeFTy software was used to model the low temperature thermal history of the Duolong ore district, the data used include apatite fission track age, length, Dpar, C-axis value (Yang et al., 2019, under review) and AHe age. purple area represents good paths; green area represents acceptable path; blue line represents best path; Ⅰ-Ⅳrepresent the four stages of uplift in the Duolong ore district
多龙矿集区的AHe年龄与采样深度呈出一定的变化趋势(图3)。采自不同深度的样品(ZK2404-B1、ZK1620-168、ZK4804-1159.7)AHe年龄在误差范围内基本一致(50Ma)。说明多龙矿集区在50Ma左右发生过一次热-构造事件,该热-构造事件致使地表到深部的磷灰石样品在大约同一时间达到封闭温度。图2b显示样品ZK2404-B1、ZK1620-168、ZK4804-1159.7采自荣那沟断层一盘的不同深度。Songetal. (2018)通过对荣那沟断层两侧安山岩编录得到断层南侧安山岩厚度为断层北侧的安山岩厚度的2倍,并结合断层两侧矿体的深度推测荣那断层为正断层。矿集区的AMT分析也显示荣那断层为正断层且倾向南,倾角在70°到80°,断层上盘可能存在被错断的铁格隆南矿体(Songetal., 2018)。该断层错断矿体和上部的安山岩,形成时间晚于安山岩形成时间(111Ma)。Ehlersetal. (2001)认为正断层热-构造事件通过4种方式影响地壳深部的封闭温度等温线:(1)正断层低温的上盘和相对高温的下盘而驱动的热量侧向流动;(2)正断层下盘相对向上运动而导致的隆升和剥蚀作用;(3)正断层上盘相对向下运动而导致的沉积和埋藏作用;(4)上盘发育的盆地内低热传导率的沉积物的侧向热折射作用。沉积作用降低了断层上盘的热量流动,而剥蚀作用加快了断层下盘热量的流动。断层下盘的封闭温度等温线深度受到地形和剥蚀作用的影响。如图4所示,由物质的向上运动作用而导致断层下盘靠近断层面位置的等温线向上迁移,断层上盘靠近断层面位置的等温线则因为物质的向下运动而向下迁移,远离断层面位置的等温线将保持位置不变(Ehlers and Chapman, 1999)。断层作用引起的断层下盘的等温线的变化致使断层下盘断层面附近不同深度的矿物在近于同时通过其封闭温度,这一时间被认为是该断层开始的时间。本研究中样品ZK2404-B1、ZK1620-168、ZK4804-1159.7均采自正断层下盘靠近断层面的不同深度,且磷灰石的AHe年龄在误差范围内为50Ma。因此认为本研究中的AHe年龄(~50Ma)代表着荣那沟断层开始的时间。ZK2404-B1样品采自地表,而ZK4804-1159.7样品采自深部1200m左右,两个样品均采自荣那沟断层下盘且均在50Ma左右达到磷灰石He的封闭温度,因此推测荣那断层的垂向断距至少在1200m之上(图5),此深度与多龙矿集区的AMT分析成果吻合(Songetal., 2018)。高角度断层的低温热年代学数据可以用来推测断层的滑移速率(Naeseretal., 1983; Fosteretal., 1993; Carteretal., 2004)。假设断层下盘沿着断层剥蚀过程中经历的等温线近似水平,则断层滑移速率为深度-年龄曲线的斜率,推算荣那沟断层的滑移速率约为0.2mm/yr。由此可见,虽然荣那断层对铁格隆南矿床产生了破坏作用,但由于荣那沟断层的滑移速率和断距均较小,没有致使断层下盘的矿体相对抬高而被剥蚀掉。同时推测荣那沟断层上盘深部1200m左右可能存在被错断的铁格隆南矿体。
4.2 热历史模拟
(U-Th)/He同位素体系定年中,当体系达到封闭温度以后,4He由U和Th经过α衰变而不断积累,产生的4He保存在矿物中,部分由于扩散作用而少量丢失。样品的(U-Th)/He定年不仅仅提供年龄值,还提供样品经历的时间-温度历史的信息。为了进一步研究多龙矿集区样品经历的热历史,本文采用HeFTy软件(Ketcham, 2005)对样品经历的时间-温度历史进行反演模拟(图6)。HeFTy是目前比较常用且准确的低温热年代学模拟软件,其反演过程中需要设置不同约束之间的单一变化路径、情景随机变化,并且不施加最大冷却速率,模拟过程一直进行到获得100次“好”的拟合路线(拟合度(GOF)≥0.5)为止,如果在模拟了1千万条路径之后仍没有获得“好”的拟合路线,则系统会继续模拟直到获得100条“可接受”路径(GOF≥0.05)为止(如图6所示)。本研究模拟过程设定磷灰石(U-Th)/He封闭温度70℃(Reinersetal., 2004),地表温度为20℃,地温梯度为25℃/km。模拟结果显示,多龙矿集区样品经历4期冷却事件:Ⅰ)100~75Ma,晚白垩世的冷却阶段,冷却速率约为4℃/Myr,剥速率约为0.16km/Myr;Ⅱ)75~45Ma,晚白垩世到始新世的冷却阶段,冷却速率约为0.3℃/Myr,剥蚀速率约为0.01km/Myr;Ⅲ)45~30Ma,始新世到渐新世的冷却阶段,冷却速率约为2℃/Myr,剥蚀速率约为0.08km/Myr;Ⅳ)30Ma至今,渐新世至今的冷却阶段,冷却速率约为1℃/Myr,剥蚀速率约为0.04km/Myr。
羌塘地块的演化主要包括早古生代的克拉通阶段、晚古生代的裂陷阶段、早中生代反转阶段和晚中生代的变形阶段(任战利等, 2016)。拉萨和南羌塘地块在晚古生代沿着冈瓦纳大陆的边缘毗邻(Kappetal., 2000),拉萨-南羌塘地块与欧亚大陆之间为古特提斯洋。古特提斯洋在二叠纪到三叠纪时期向北俯冲到昆仑地块之下,在晚三叠世到早侏罗世时期向南俯冲到北羌塘地块之下,而导致古特提斯洋的消亡(Deweyetal., 1988; Pearce and Mei, 1988;engöretal., 1988; Nieetal., 1994; Yin and Nie, 1996)。在二叠纪到三叠纪或早侏罗时期,南羌塘地块从拉萨地块上裂解出来,此时班公湖-怒江洋裂开于南羌塘和拉萨地块之间(engöretal., 1988),同时古特提斯洋向北闭合。在晚三叠世到早侏罗世期间,班公湖-怒江洋开始向北俯冲到南羌塘地块之下(Lietal., 2017b)。到早白垩世时期,班公湖-怒江洋的俯冲作用导致了拉萨和羌塘地块的再次合并(Girardeauetal., 1984; Tang and Wang, 1984; Pearce and Deng, 1988)。羌塘地块在燕山-喜马拉雅时期经历了主要的变形阶段(Liuetal., 2001)。班公湖-怒江洋的俯冲作用导致侏罗纪到白垩纪时期的中酸性岩浆岩和火山岩广泛发育在拉萨地块、羌塘地块和班公湖-怒江缝合带上(Lietal., 2017a; Liuetal., 2017; Kappetal., 2007)。多数金属矿床也形成于此时期,如发育在班公湖-怒江缝合带北部的侏罗纪的矽卡岩型Fe-Cu矿床(张璋等, 2011)和早白垩世的斑岩型Cu-Au矿床(Lietal., 2011; Zhuetal., 2015; 唐菊兴等, 2014)、发育在拉萨地块北侧的晚白垩世的斑岩-矽卡岩型Cu±Mo±Au矿床(Zhangetal., 2015)。早白垩世的多龙斑岩-浅成低温热液型矿床就形成于此时期。班公湖-怒江洋在晚白垩世(100~70Ma)的闭合导致了羌塘地块和拉萨地块的碰撞,进一步导致了羌塘地块的隆升造山作用(任战利等, 2016)。班公湖-怒江缝合带两侧广泛发育的磨拉石建造、羌塘地块内上白垩统阿布山组和下伏的侏罗系到下白垩统雪山组地层之间的不整合关系是羌塘地块经历碰撞造山作用的标志(Lietal., 2013; Lietal., 2010; Zhangetal., 2012)。Liuetal. (2017)识别出多龙矿集区内发育的烧结矿、滑移面、断层带、飞来峰和构造窗,认为多龙矿集区曾发育逆冲推覆构造,依据区内发育的地层之间的关系,推测该逆冲推覆构造方向为由南到北,且时间在70Ma左右。本研究中样品DL2014-20、DL2014-55的AHe年龄值集中在大约70Ma,表明样品在70Ma左右经历过一次抬升冷却事件。因此本研究中的AHe年龄记录了多龙矿集区在70Ma的这次逆冲推覆事件。该逆冲推覆构造在时间上与南羌塘盆地碰撞造山时间一致,推测由拉萨-羌塘地块持续碰撞引起。青藏高原自新生代以来经历的多期次的隆升-剥蚀过程,从而为青藏高原的形成奠定了基础。印度和欧亚大陆的碰撞开始于65Ma(Jaegeretal., 1989; Rowley, 1996),并于40Ma完成的硬碰撞(Chungetal., 2005)。印度-欧亚大陆碰撞对青藏高原地壳的缩短加厚和亚洲大陆的演化至关重要。构造数据、盆地和变形研究显示,新生代以来羌塘地块的地壳缩短和隆升作用开始于始新世(Tapponnieretal., 2001; Spurlinetal., 2005; Zhouetal., 2006)。Rowley and Currie (2006)通过对西藏中部的始新世沉积物的氧同位素研究,认为西藏地表高程至少在35Ma之前就已经达到了4km以上。Wangetal. (2008)对羌塘盆地中部多格错仁的岩浆岩研究显示该区的埃达克岩来源于通过大陆俯冲作用加厚的榴辉岩地壳的熔融作用,认为青藏高原中部的隆升作用开始于45~38Ma。任战利等(2016)通过对羌塘地块的低温热年代学研究认为羌塘地块在始新世中晚期-中新世晚期经历抬升冷却阶段。前人研究认为青藏高原中部在新生代的抬升冷却作用与印度-欧亚大陆的碰撞事件相关(Yin and Harrison, 2000; Tapponnieretal., 2001; Kindetal., 2002; Kumaretal., 2006; Rowley and Currie, 2006; 任战利等, 2016; Wangetal., 2008)。多龙矿集区的部分磷灰石(U-Th)/He年龄落在37.9~52.3Ma之间,反映多龙矿集区也受到印度-欧亚大陆碰撞事件的影响。上文所述,多龙矿集区在50Ma左右发育正断层,该断层在时间上与印度-欧亚大陆碰撞时间吻合,推测该正断层是印度-欧亚大陆碰撞作用对多龙矿集区产生的效应。渐新世以来,青藏高原经历的频繁的构造事件,Wangetal. (2002)认为晚渐新世西藏北部经历强烈构造事件,致使地壳加厚并在南-北方向缩短了40%,渐新世末期整个青藏高原在广泛的剥蚀作用下形成了准平原地表。Garzioneetal. (2000)认为青藏高原在晚中新世以前隆升到现今高度。Harrisonetal. (1992)通过沉积物的热释光研究认为西藏南部的迅速隆升和去顶作用发生在20Ma左右,同时青藏高原的大部分地区在8Ma左右隆升到现今高度。Zhengetal. (2000)通过对西藏北部磁性地层学研究认为西藏北部主要隆升时期开始于4.5Ma。Sun and Liu (2000)通过地层学研究认为青藏高原在1.1~0.9Ma发生隆升作用。
本次研究认为,多龙矿集区在100~75Ma间经历的冷却阶段与班公湖-怒江洋的闭合以及拉萨-羌塘地块的碰撞事件有关;在75~45Ma间的冷却阶段与拉萨-羌塘地块的继续碰撞事件以及由碰撞作用引起的逆冲推覆构造事件(~70Ma, Liuetal., 2017)相关;45~30Ma期间的冷却阶段与印度-欧亚大陆的碰撞抬升事件有关;30Ma之后经历的冷却阶段则与印度-欧亚大陆的持续碰撞作用以及渐新世以来青藏高原的频繁的构造事件有关。
图7 多龙矿集区埋藏-剥蚀演化历史示意图Fig.7 The schematic map of burial-erosion history of the Duolong ore district
4.3 多龙矿集区的隆升-剥蚀历史
如图7所示,早白垩世(120~100Ma),班公湖-怒江洋的北向俯冲到南羌塘地块之下,引起了广泛的岩浆活动。多龙Cu(Au)矿集区(120Ma)形成于活动大陆边缘(Lietal., 2017c),到110Ma美日切错组火山岩广泛发育并且覆盖于矿体之上起到保护作用。晚白垩世(100~75Ma),班公湖-怒江洋的闭合导致了羌塘地块和拉萨地块的碰撞,与此同时南羌塘地块发生大规模的造山作用。晚白垩世晚期(~75Ma),拉萨-羌塘地块的持续挤压作用导致多龙矿集区发生由南向北的逆冲推覆构造(Liuetal., 2017),使多龙矿集区内矿床上覆的地层加厚。古新世到始新世(45~30Ma),印度-欧亚大陆的碰撞作用对羌塘地块的变形过程产生了重要的影响,多龙矿集区在此时期经历一次抬升-冷却阶段。矿集区内北西-南东向的荣那沟正断层形成于此时期,该正断层错断铁格隆南的矿体,对矿体产生一定的破坏作用。渐新世以来(30Ma),印度-欧亚大陆持续的碰撞作用使青藏高原经历地壳缩短和剥蚀夷平过程。此时期为多龙矿集区的抬升-冷却阶段,该阶段分为前期的缓慢抬升-冷却时期(30~7Ma)和后期的迅速抬升-冷却时期(<7Ma)。
通常浅成低温热液型矿床的形成深度为地表以下50~700m,最大深度不超过2km(Hedenquist and Taran, 2013; Sillitoe, 2015)。多龙矿集区(120Ma)含矿岩体形成于深部<2km,形成之后被110Ma的美日切错组的火山岩覆盖,对矿体起到保护作用。由拉萨-羌塘地块碰撞作用导致多龙矿集区内发育的逆冲推覆构造(75Ma)使上伏地层加厚,致使矿体上部覆盖了至少2~3km(据磷灰石He封闭温度计算,Reinersetal., 2004)的盖层进一步加强了对矿床的保护作用。印度-欧亚大陆的碰撞作用对多龙矿集区产生一定的破坏作用,产生的荣那沟断层错断铁格隆南矿体,但由于该断层的滑移速率和断距规模较小,断层下盘的铁格隆南矿体没有遭到剥蚀作用的破坏。综上所述,多龙矿集区的形成于班公湖-怒江洋的俯冲环境下的活动大陆边缘,矿集区形成后能够在强烈的隆升-剥蚀的环境下保存下来则得益于美日切错组火山岩的覆盖和由拉萨-羌塘地块碰撞作用引起的逆冲推覆构造导致上伏地层加厚的双重保护作用以及印度-欧亚大陆碰撞事件在多龙矿集区产生的相对较弱的破坏效应。野外编录资料显示多龙矿集区地表安山岩盖层平均厚度较小约为90m(宋扬等, 2017),因此认为美日切错组安山岩对矿床的保护作用有限,拉萨-羌塘地块碰撞作用引起的逆冲推覆构造对多龙矿集区起主要的的保存作用。
5 结论
(1)多龙矿集区磷灰石(U-Th)/He年龄平均值分布在37.9±2.5Ma到85.1±4.0Ma之间,记录了晚白垩世晚期到古新世和始新世的构造抬升事件。
(2)热历史模拟显示多龙矿集区经历4阶段冷却事件:Ⅰ)100~75Ma,晚白垩世的冷却阶段,冷却速率约为4℃/Myr,剥速率约为0.16km/Myr;Ⅱ)75~45Ma,晚白垩世到始新世的冷却阶段,冷却速率约为0.3℃/Myr,剥蚀速率约为0.01km/Myr;Ⅲ)45~30Ma,始新世到渐新世的冷却阶段,冷却速率约为2℃/Myr,剥蚀速率约为0.08km/Myr;Ⅳ)30Ma至今,渐新世至今的冷却阶段,冷却速率约为1℃/Myr,剥蚀速率约为0.04km/Myr。
(3)阶段Ⅰ与班公湖-怒江洋的闭合以及拉萨-羌塘地块的碰撞事件有关;冷却阶段Ⅱ与拉萨-羌塘地块的继续碰撞事件以及由碰撞作用引起的逆冲推覆构造事件有关;冷却阶段Ⅲ与印度-欧亚大陆的碰撞抬升事件有关;冷却阶段Ⅳ与印度-欧亚大陆的持续碰撞作用以及渐新世以来青藏高原的频繁的构造事件有关。
(4)多龙矿集区形成于班公湖-怒江洋的俯冲环境下的活动大陆边缘,多龙矿集区在强烈隆升-剥蚀的环境下得以保存与美日切错组火山岩的覆盖,拉萨-羌塘地块碰撞作用引起的上伏地层加厚的双重保护作用以及印度-欧亚大陆碰撞事件在多龙矿集区产生的相对较弱的破坏效应密切相关。其中拉萨-羌塘地块碰撞作用对多龙矿集区的保存起主要作用。