APP下载

滇西剑川始新世富碱岩浆岩锆石U-Pb年代学与Sr-Nd-Hf同位素地球化学及其对岩石成因的制约*

2019-04-04沈阳郑远川张爱萍王梓轩王璐徐培言吴昌炟

岩石学报 2019年3期
关键词:剑川岩浆岩斑岩

沈阳 郑远川** 张爱萍 王梓轩 王璐 徐培言 吴昌炟

1. 中国地质大学地球科学与资源学院,北京 1000832. 云南大学资源环境与地球科学学院,昆明 6500911.

肇始于新生代的印度-欧亚大陆碰撞造山作用(Yin and Harrison, 2000; Dingetal., 2003; Zhangetal., 2012),晚碰撞阶段(40~26Ma)主要是以大规模走滑剪切为特征(侯增谦等, 2006a, b),以青藏高原东缘三江地区表现最为显著,发育了一系列由北北西至南北向深大断裂组成的大规模走滑断裂系统,即著名的金沙江-哀牢山走滑断裂系统(Houetal., 2003)。沿走滑断裂广泛发育新生代富碱侵入岩和钾质火山岩,构成著名的长达~1000km的金沙江-红河富碱岩浆岩带(张玉泉等, 1987; 邓万明等, 1998),同时,在此岩浆岩带内形成有与富碱岩浆岩在成因和时空分布密切相关的斑岩型铜-钼-金等多金属成矿带(侯增谦等, 2004, 2015)。因此,对带内富碱岩浆岩的地球化学和岩浆演化的有效限定对于完善区域富碱岩浆岩成因和金属矿产的资源评价与找矿具有重要意义。

三江地区的大量新生代富碱岩浆岩总体可将其划分为浅成富碱侵入岩和钾质-超钾质火山岩两类,其成因争论较多,不同的模式包括:岩石圈减薄软流圈上涌引起交代富集地幔部分熔融模式(Chungetal., 1998; 张玉泉等, 2000)、壳幔过渡带部分熔融模式(邓万明等, 1998; Wangetal., 2001)、扬子板块西向俯冲模式(Liuetal., 2000; 侯增谦等, 2004)、兰坪-思茅大陆板片沿断裂带东向俯冲模式(Wangetal., 2001)、大规模走滑诱发的“岛弧型”地幔熔融模式(王建等, 2003),金云母-石榴石-单斜辉石岩脉低程度部分熔融模式(Jiangetal., 2006)。这些模型虽可解释地球化学特征,但是三江富碱岩浆岩分布范围广、类型多样、产状复杂,且上述模式都是基于某个地区或矿区研究提出。同时,该区浅成富碱侵入岩与钾质-超钾质的火山岩伴生,而部分模式的提出将两者混为一体,缺乏对区域新生代富碱岩浆岩的精细划分。目前,对三江新生代富碱岩浆岩岩石性质和成因的认识依然存在偏差。

滇西剑川位于青藏高原东南缘的三江南段地区(图1a),处于三江造山带与扬子板块西南缘的结合部位,记录了青藏高原隆升过程中大地构造演化及深部动力学的关键信息。目前对区内新生代岩浆岩的研究仍然较为薄弱,特别是研究区内富碱岩浆岩的岩石成因及其与三江富碱岩浆岩带的时空关系尚不明确,制约了对该区岩浆属性、地质演化和成矿地质条件的正确认识。本文对这些岩浆岩开展了野外调查和室内工作,发现存在花岗岩和正长岩两类岩石。通过系统采集花岗岩和正长岩样品并开展锆石U-Pb定年、全岩主微量与Sr-Nd同位素以及锆石Hf同位素研究,以期精确厘定其成岩年龄、岩浆源区和演化关系,补充完善三江富碱岩浆岩的岩石成因,探讨其动力学过程和成矿潜力。

1 地质背景与岩石特征

滇西剑川位于青藏高原东南缘的三江南段地区(图1a),处于三江褶皱造山带和扬子板块西南缘的结合部位。三江地区南段由于经历了特提斯构造活动(Lietal., 2018)、陆内造山作用以及新生代构造转换的改造,造就了该区复杂的地质构造系统,褶皱和断裂较为发育。区域上各时代地层较为齐全,自前寒武系苍山群至第四系沉积物均有分布。三江南段扬子克拉通西缘一侧的岩浆岩较为发育,岩石类型复杂,明显受到区域断裂构造的控制(Lietal., 2018),二叠纪玄武岩广为分布,但以新生代火山-侵入岩最为发育,次为不同时期的酸性、碱性侵入岩以及新生代基性火山岩。新生代岩浆岩主要是一系列沿金沙江-哀牢山断裂带两侧(剑川、鹤庆、祥云、姚安和金平等)分布的富碱侵入岩体(图1a; 侯增谦等, 2004; Luetal., 2012; 沈阳等, 2018),此外零星分布有煌斑岩脉和钾质火山岩,如碱玄岩、粗面岩和钾质云煌岩等(Guoetal., 2005; Huangetal., 2010; Luetal., 2015)。富碱侵入岩岩性复杂,以二长花岗斑岩、花岗斑岩、石英二长斑岩、透辉石正长岩和石英正长斑岩为主(侯增谦等, 2004; Luetal., 2012; 沈阳等, 2018)。富碱侵入岩具有富碱(K2O+Na2O>8.0%)、高钾(K2O/Na2O>1.0)的特征,属于高钾钙碱性和钾玄岩系列岩石;通过锆石U-Pb法测得区域内富碱侵入岩的侵位时间主要集中在37~32Ma(Luetal., 2012)。

样品采自剑川县城西北,根据1:20万兰坪幅和维西幅区调资料(赵永嘉等, 1974; 王自康等, 1984),剑川新生代富碱侵入岩主要呈岩株与岩枝状产出,形态多不规则,且侵位的最新层位为新近纪剑川组沉积地层(图1b)。区内出露地层包括中-古元古界石鼓片岩,分布于研究区东北缘;古近系宝相寺组砾岩、杂砂岩,金丝厂组砂岩夹钙质砂岩、粉砂岩,以及新近系双河组砂岩、泥岩,剑川组凝灰质砂砾岩、火山角砾岩等大面积分布于中南部(图1b)。

横穿研究区内各富碱岩浆岩体共采集了13件新鲜的岩石样品(图1b)。根据野外和室内工作共识别出4种岩性,即石英二长斑岩、花岗斑岩和正长斑岩、粗面岩。石英二长斑岩(15SG02-2,图2a)为斑状结构,斑晶主要为斜长石(30%~40%),钾长石(40%~30%)、石英(10%~15%)和黑云母(5%~10%),基质为显晶质主要是石英和长石等,副矿物为磷灰石、榍石、锆石和铁钛氧化物等约1%~5%。花岗斑岩(14YL01-1,图2c)为斑状结构,斑晶主要为石英(15%~25%)、斜长石(25%~30%),钾长石(35%~30%)和黑云母(5%~10%),基质主要是石英和长石等,副矿物为磷灰石、榍石、锆石和铁钛氧化物等。角闪正长斑岩(16JCs01-1,图2b)为斑状结构,斑晶主要为钾长石(30%~40%)、角闪石(35%~20%)和黑云母(10%~15%),基质主要是石英、正长石和少量的角闪石等,副矿物为磷灰石、锆石和铁钛氧化物等约1%~5%。粗面岩(16JCb03-3,图2d)为斑状结构,斑晶主要为钾长石(30%~40%)和透辉石(30%~35%),基质为隐晶质,副矿物以铁钛氧化物等为主。

图1 金沙江-红河断裂带新生代富碱岩浆岩地质图

(a)青藏高原东缘新生代构造和富碱岩浆岩分布图(据Wangetal., 2001; 侯增谦等, 2004);(b)滇西剑川研究区地质图(据赵永嘉等, 1974[注]赵永嘉, 刘礼国, 王义昭等. 1974. 兰坪幅(G-47-X Ⅵ)1:20万区域地质调查报告; 王自康等, 1984[注]王自康, 张远志, 彭兴阶等. 1984. 维西幅(G-47-X)1:20万区域地质调查报告修改)及采样位置

Fig.1 Geological map of Cenozoic alkali-rich magma along Jinsha River-Red River fault zone

(a) geologic map showing Cenozoic structure and distribution of the alkali-rich magmatic rocks in the eastern Tibetan Plateau (modified after Wangetal., 2001; Houetal., 2004); (b) geological map of the studied area with the location of samples

图2 滇西剑川富碱岩浆岩正交偏光下显微镜照片(a)石英二长斑岩;(b)角闪正长斑岩;(c)花岗斑岩;(d)粗面岩. Q-石英;Pl-斜长石;Kf-钾长石;Am-角闪石;Bi-黑云母;Di-透辉石Fig.2 Microphotos under cross-polarized lights of the alkali-rich magmatic rocks in the Jianchuan area of western Yunnan(a) quartz monzonite porphyry; (b) amphibole syenite porphyry; (c) granite porphyry; (d) trachyte. Qz-quartz; Pl-plagioclase; Kfs-K-feldspar; Am-amphibole; Bt-biotite; Di-diopside

2 测试方法

岩石样品主微量元素在武汉上谱分析科技有限责任公司和北京大学造山带与地壳演化教育部重点实验室完成测试。其中,主量元素用XRF法测定, 微量元素采用等离子质

谱ICP-MS(Agilent 7700e)测定,主微量数据的质量优于10%。样品Sr-Nd同位素分析在中国科学技术大学放射性成因同位素地球化学实验室完成,同位素比值的测试采用MAT-262热电离质谱计完成,Rb-Sr同位素比值测定采用Ta金属带和Ta发射剂;Sm-Nd比值测定采用Re金属带。标准溶液NBS987的重复测量结果为87Sr/86Sr=0.710249±0.000012(2σ, n=38),标准溶液La Jolla重复测量结果为143Nd/144Nd=0.511869±0.000006(2σ, n=25)。Sr和Nd同位素比值测量精度优于0.003%。测得同位素比值采用86Sr/88Sr=0.1194和146Nd/144Nd=0.7219进行质量分馏校正。重复分析标准溶液NBS 987和La Jolla,分别得到87Sr/86Sr值为0.710249±0.000012和143Nd/144Nd值0.511869±0.000006。全岩Rb-Sr、Sm-Nd分析的全流程本底分别是<200pg、<100pg。详细的分析流程可以参见Chenetal. (2000)。

锆石LA-ICP-MS U-Pb测年在中国地质大学(北京)地学实验中心矿物激光微区分析实验室(MilmaLam)完成,仪器为NewWave193UC型准分子激光器和Agilent 7900四级杆型等离子质谱仪(ICP-MS)。分析中,年龄计算采用国际91500作为外标,元素含量采用美国标准物质局人工合成玻璃NIST610作为外标,29Si作为内标元素进行校正。数据校正采用ICPMSDataCal处理样品的同位素比值和元素含量数据(Liuetal., 2008a, b),普通铅校正按Andersen (2002)完成,年龄计算和谐和图绘制采用ISOPLOT(Ludwig, 2003)完成。

锆石在完成定年后,进行相同位置原位Hf同位素分析,在中国地质科学院地质研究所大陆构造与动力学重点实验室利用Neptune Plus型多接收等离子质谱和GeoLasPro 193nm激光剥蚀(LA-MC-ICP-MS)系统完成。测试过程中采用He作为剥蚀物质载气,剥蚀直径采用44μm,测定时使用锆石GJ-1作为参考, 实验过程中的相关仪器运行条件及详细的分析流程参见侯可军等(2007)。分析过程中锆石标准GJ-1的176Hf/177Hf测试加权平均值和误差分别为0.282007±0.000025(2σ)。计算初始176Hf/177Hf时,Lu的衰变常数采用1.865×10-11/y(Schereretal., 2001),εHf(t)值的计算时采用球粒陨石Hf同位素值176Lu/177Hf=0.0336,176Hf/177Hf=0.282785(Bouvieretal., 2008)。在Hf的地幔模式年龄计算中,亏损地幔176Hf/177Hf现在值采用0.28325,176Lu/177Hf采用0.0384(Griffinetal., 2000),地壳模式年龄计算时采用平均地壳176Lu/177Hf=0.015(Griffinetal., 2002)。

表1剑川富碱岩浆岩主量(wt%)、微量元素(×10-6)与Sr-Nd同位素成分

Table 1 Whole-rock major (wt%), trace (×10-6) elements, Sr-Nd isotopic data of the Jianchuan alkali-rich magmatic rocks

样品号14JC01-214JC01-314JP08-116JCS01-116JCB03-216JCB03-314JC02-114YL01-114LJS01-116JCS20-116JCS20-215SG01-415SG02-2岩性透辉石正长斑岩角闪正长斑岩粗面岩花岗斑岩石英二长斑岩系列钾玄质岩埃达克岩年龄(Ma)35.735.835.136.1SiO261.4962.1063.5154.8854.0253.9469.1469.9368.0167.9567.9268.9168.65TiO20.610.580.420.780.800.800.360.260.370.310.310.260.26Al2O315.4315.5315.5714.5814.3314.5015.2414.2014.7313.3013.3015.6915.36FeOT4.634.363.456.126.336.322.431.422.462.002.011.621.77MnO0.100.100.090.130.130.130.060.020.050.040.040.030.05MgO1.291.321.443.483.873.810.880.841.061.081.120.810.94CaO3.933.703.435.285.725.502.381.942.433.823.482.002.03Na2O4.104.264.713.752.892.654.513.494.123.123.095.225.08K2O6.816.586.126.707.117.103.874.243.933.713.704.514.70P2O50.310.300.230.750.780.790.190.070.170.150.150.140.13LOI0.340.310.241.811.981.900.373.282.054.153.860.390.53Total99.5599.6199.6098.9498.6598.1499.6999.8599.6799.8699.2199.7699.69Mg#33354351525239514449504749A/CNK0.730.740.750.630.630.660.961.020.950.830.860.920.90Li26.732.825.343.934.635.025.789.529.046.647.219.317.8Be6.556.437.6913.129.6315.023.473.234.093.413.343.012.81Sc11.8913.149.2013.2413.9213.855.303.636.565.415.422.922.78V1181108012313613544.0827.6746.2138.4237.9013.3921.71Cr41.3931.3769.2844.0355.6952.885.888.215.1317.3117.360.556.20Co11.1810.179.1019.3021.3721.234.712.675.314.924.572.722.70Ni19.0016.1027.2020.6324.9024.725.264.045.4410.5610.173.274.63Cu42.4629.048.9783.6686.0189.323.453.2612.697.557.381.951.97Zn72.266.649.010810811138.725.540.840.239.018.436.3Ga20.8720.5120.8821.3920.7322.2919.7920.3821.7518.0017.9620.5119.83Rb256266243230287316120153122126130123121Sr1685163116392080237723841471370111597496512331277Y28.828.324.933.2292.3155.913.910.316.212.011.78.87.9Zr361369380399339344141155154152152143133Nb26.7326.7429.2227.8324.0524.838.838.398.488.508.447.607.50Ba228022172140198426062873174592425511386137916541742Hf7.637.678.309.778.918.913.703.434.404.224.333.854.56Ta1.661.741.861.731.601.600.780.690.680.580.590.840.85Pb48.150.442.4106.7104.4111.445.023.257.238.938.949.944.6Th23.923.726.244.234.236.510.414.712.810.010.39.08.6U6.697.146.318.893.153.222.463.205.685.525.262.252.08La51.349.350.964.1139.8231.828.538.032.025.425.121.519.4Ce99.597.998.8120.5125.3137.955.062.160.147.146.841.137.4Pr12.1011.8711.7713.6223.4649.556.567.397.155.375.254.944.60Nd45.345.343.452.5101.8198.224.726.028.518.017.716.916.0Sm11.7511.289.9510.2221.3838.456.016.346.543.523.533.963.84Eu2.472.352.202.527.189.691.411.191.640.850.871.161.13Gd8.097.817.088.1038.6737.054.053.864.632.612.682.972.78Tb1.061.030.911.125.255.200.510.500.580.380.390.380.35Dy5.575.434.756.0630.5427.852.612.402.962.072.081.791.69Ho1.061.040.901.126.745.420.480.390.560.380.390.310.30Er2.882.812.443.0318.4315.051.280.971.461.061.010.810.75Tm0.440.440.380.451.981.920.190.150.220.160.150.120.11

续表1

Continued Table 1

样品号14JC01-214JC01-314JP08-116JCS01-116JCB03-216JCB03-314JC02-114YL01-114LJS01-116JCS20-116JCS20-215SG01-415SG02-2岩性透辉石正长斑岩角闪正长斑岩粗面岩花岗斑岩石英二长斑岩系列钾玄质岩埃达克岩年龄(Ma)35.735.835.136.1Yb2.812.772.392.939.1012.341.181.041.391.081.040.750.74Lu0.430.430.350.441.351.930.170.160.210.150.150.110.11Eu/Eu∗0.770.770.800.850.760.780.870.740.910.860.871.031.05Sr/Y58.6 57.6 65.8 62.6 8.1315.3 106 36.1 68.9 81.2 82.3 140 161 (La/Yb)N13131516111317261617172119Zr/Sm30.732.738.239.115.98.9423.524.523.543.143.236.234.7Nb/Ta16.115.415.716.115.015.511.312.112.514.614.49.098.82(87Sr/86Sr)i0.70700.70700.70710.70730.70590.7056143Nd/144Nd0.51250.51250.51240.51250.51250.5126εNd(0)-3.5-3.3-4.4-2.5-2.6-0.4εNd(36Ma)-3.3-3.0-4.2-2.2-2.2-0.2tDM (Ga)1.281.181.251.161.030.98

通过以上测试,本文获得了13件样品的主、微量元素和6件Sr-Nd同位素(表1)、4件样品的锆石U-Pb定年(表2)和锆石Hf同位素(表3)测试结果。

3 结果

3.1 锆石U-Pb年代学和Hf同位素

本文对剑川富碱岩浆岩体中的2件花岗斑岩(16JCs20-1、14YL01-2)和2件正长斑岩(14JP08-1、16JCs01-1)样品进行了锆石U-Pb定年(表2、图3)。这4件样品中的多数锆石为典型的岩浆锆石,显示较好的生长环带(图3),部分呈不完整的棱角状或浑圆状。

花岗斑岩16JCs20-1中,测得18颗锆石的Th/U比值为0.46~1.27(>0.40),表明测定的锆石均为岩浆成因(Hoskin and Schaltegger, 2003),测点的206Pb/238U年龄比较集中为36.9~34.5Ma,加权平均年龄为36.1±0.2Ma(MSWD=1.1)(图3a)。样品14YL01-2中,选择33颗锆石开展测试,测点的206Pb/238U年龄比较分散,变化为2366~34.3Ma(图3c)。其中,8颗新生代岩浆锆石的Th/U比值为0.44~0.81,测点的206Pb/238U加权平均年龄为35.1±0.4Ma(MSWD=2.5)(图3e);继承锆石的206Pb/238U年龄介于2366~65.1Ma之间(图3c)。透辉石正长斑岩14JP08-1中,16颗锆石的Th/U比值为0.47~0.95(>0.40),表明测定的锆石为岩浆成因(Hoskin and Schaltegger, 2003),测点的206Pb/238U年龄比较集中为37.5~34.9Ma,加权平均年龄为35.7±0.1Ma(MSWD=3.2)(图3b)。角闪石正长斑岩16JCs01-1中,对32颗锆石进行测定,测点的206Pb/238U年龄比较分散,变化为2456~35.1Ma(图3d)。其中,8颗新生代岩浆锆石的Th/U比值为0.44~0.81,测点的206Pb/238U加权平均年龄为35.8±0.4Ma(MSWD=0.8)(图3f)。继承锆石测点的206Pb/238U年龄介于2456~138Ma之间(图3d)。

图3 滇西剑川富碱岩浆岩体的锆石U-Pb年龄谐和图Fig.3 U-Pb concordia diagrams of the alkali-rich magmatic rocks from Jianchuan, western Yunnan

对已测年龄的4个样品进行锆石Lu-Hf同位素分析,结果见表3。花岗斑岩16JCs20-1中锆石176Hf/177Hf为0.282787~0.282871,εHf(t)值为+1.3~+4.3,Hf同位素地壳模式年龄(tDMC)为0.84~1.03Ga。样品14YL01-2中8颗岩浆锆石176Hf/177Hf为0.282788~0.282878,εHf(t)值为+1.3~+4.5,Hf同位素地壳模式年龄(tDMC)为0.83~1.03Ga。透辉石正长斑岩14JP08-1中16颗锆石176Hf/177Hf为0.282734~0.282852,εHf(t)值为-0.6~+3.6,Hf同位素地壳模式年龄(tDMC)为0.89~1.15Ga。角闪石正长斑岩16JCs01-1中8颗岩浆锆石176Hf/177Hf为0.282705~0.282877,εHf(t)值为-1.6~+4.5,Hf同位素地壳模式年龄(tDMC)为0.83~1.22Ga。

3.2 全岩主微量元素

剑川花岗斑岩和石英二长斑岩的SiO2含量变化为67.92%~69.93%(表1),除个别样品落入石英二长岩范围外,多数样品落入了花岗岩区内(图4a);正长斑岩和粗面岩的SiO2含量变化范围为53.94%~63.51%(表1),样品主要落在正长岩和二长岩区内(图4a)。剑川富碱岩浆岩样品均具有较高的K2O含量,花岗斑岩和石英二长斑岩的K2O含量变化范围为3.70%~4.70%(表1),在K2O-SiO2图解中均落入高钾钙碱性岩石系列(图4b);而正长斑岩和粗面岩的K2O含量变化范围为6.12%~7.10%(表1),属钾玄质岩石系列(图4b)。

在球粒陨石标准化稀土元素配分图中(图5a),样品强烈富集轻稀土(LREE),具有明显轻重稀土分馏特征。正长斑岩和粗面岩的(La/Yb)N为11~16(表1),与区域基性岩具有一致的稀土元素配分模式(图5a);而花岗斑岩和石英二长斑岩的(La/Yb)N为16~26(表1),具有更为显著的轻重稀土分馏趋势(图5a)。同时,样品都没有明显的Eu异常(0.74~1.05)(图5a),表明没有斜长石的分离结晶。在原始地幔标准化微量元素蛛网图中(图5b),不同岩性的岩石均显示大离子亲石元素和Pb富集、高场强元素亏损等特征,其中Nb、Ta和Ti呈明显的“TNT”负异常,暗示具有岛弧岩浆的特征。此外,花岗斑岩和石英二长斑岩具有高的Sr(370×10-6~1471×10-6)、Sr/Y、La/Yb比值和低的Yb(0.74×10-6~1.39×10-6)、Y(7.92×10-6~16.2×10-6)含量(表1),呈现埃达克质岩浆的属性。

表2剑川地区富碱岩浆岩锆石LA-ICPMS U-Pb定年结果

Table 2 Zircon LA-ICPMS U-Pb data of the Jianchuan alkali-rich magmatic rocks

测点号含量(×10-6)ThUPbTh/U同位素比值年龄(Ma)207Pb206Pb1σ207Pb235U1σ206Pb238U1σ207Pb206Pb1σ207Pb235U1σ206Pb238U1σ16JCs20-1花岗斑岩011116150342.40.740.048410.001610.037140.001230.005570.000081204937135.80.5021071955.547.51.120.046290.001590.036350.001270.005710.00008134836136.70.5031862228773.50.810.049380.002490.038340.001870.005680.000091668338236.50.6041030137743.80.750.046340.002380.036360.001860.005750.00011167436236.90.705146.8196.95.60.750.049220.001570.038760.001410.005690.000081585839136.60.506593.3704.428.40.840.043360.001810.033690.001410.005650.00007-1047034136.30.4072062225485.10.910.047810.001940.036890.001360.005640.00007906037136.30.5081844144672.01.270.048790.002510.037840.001950.005650.000091388938236.30.6091092215949.80.510.04770.002140.037290.001590.005680.00011856337236.50.710796.4173032.10.460.04970.001660.038250.001210.00560.0000618155381360.411873.8110739.90.790.046990.001630.036280.001260.005610.000074953361360.512206.9439.4162.40.470.04570.002270.035460.001620.00570.00012-185635236.60.813340.8590.215.70.580.048210.002040.036950.001470.00560.0000711067371360.514141.6196.638.50.720.046140.001570.035630.00120.005610.0000654936136.10.415982.0110754.50.890.049850.001940.037820.001370.005540.000061886338135.60.416366.1477.415.20.770.045920.002220.034150.001760.005360.00008-68134234.50.517917.6125336.60.730.047280.001730.03650.001320.005610.000076359361360.418485.8660.419.50.740.046570.001910.035780.001460.005620.00008276236136.10.514YL01-2花岗斑岩0188.3486.98.30.180.162830.002268.21160.119710.365640.0043424851122551320092002882.6178326.70.490.069050.001121.435380.023910.150710.0018590016904109051003922.714689.80.630.160020.002328.918940.134820.404090.0048724561223301421882204968.6188513.90.510.046720.001940.035570.001440.005520.00006356635135.50.405449.2227413.30.200.051720.001420.336320.009110.047140.0006527337294729740640.4126.314.60.320.152550.002248.078960.124080.383960.0046523751222401420952207558.5105291.40.530.062880.001510.998670.023730.115140.001567042870312703908657.8933.313.40.700.046750.002040.035680.001520.005530.00006367136135.60.40971.0356.548.60.200.078040.002431.408750.041440.130930.001331148638931779381075.3688.377.50.110.160340.002819.178080.136630.415160.0038524593023561422381811222.8361.640.40.620.046920.002640.035440.001960.005480.000064512335235.20.412127.9915.4200.40.140.155290.002089.052850.110060.422710.003752405102343112273171341.6318.644.30.130.139590.002355.139960.072970.267050.002422222301843121526121415612030183.20.770.04920.001940.03740.001440.005510.000061577037135.40.41566.4336.927.70.200.076730.001461.981620.033220.18730.00169111439110911110791660.5235.551.90.260.066170.001041.162660.0170.127410.00116812167838773717151.0136765.70.110.071390.001181.600310.024610.162540.00159691797010971818639.9144463.40.440.046840.001580.042030.001380.006510.00007415242141.80.419124.8270.93.40.460.047480.001380.035870.001010.005480.00005734935.8135.20.320132.1943.911.00.140.061140.001070.90450.016410.107270.00137644196549657821506.6161917.10.310.066070.001291.345390.026830.147660.001958092186612888112275.01732643.30.040.052240.001020.308890.006210.042880.00056296242735271323361.8992.724.20.360.067010.000961.288060.016910.139380.0012483814840884172471.8951.98.20.080.067820.001171.159330.018680.123950.0011586319782975372530.959.52.40.520.051620.002150.072290.002950.010150.000112697471365.10.726388.1481.848.50.810.049850.001960.042110.001620.006120.000071886842239.30.427115.8472.971.10.240.06710.001061.300630.0190.140560.00128841168468848728342.8566.5263.70.610.046750.002010.034460.001450.005340.00006366934134.30.429147.1289.514.60.510.047310.001540.03480.001090.005340.00005657235134.30.330491.21148140.50.430.065450.001291.162720.020320.128850.00117789427831078173118451916272.90.960.066110.001021.200630.017160.131680.00119810168018797732617.8125757.90.490.112230.001395.185660.066750.333820.00252183613185011185712

续表2

Continued Table 2

测点号含量(×10-6)ThUPbTh/U同位素比值年龄(Ma)207Pb206Pb1σ207Pb235U1σ206Pb238U1σ207Pb206Pb1σ207Pb235U1σ206Pb238U1σ33264.1430.2190.70.610.046720.001650.035480.001220.005510.00005355735135.40.314JP08-1透辉石正长斑岩01179.4195.17.10.920.05050.004290.036280.002560.005550.0001221812136335.70.80267.6119.74.40.560.056340.008020.039180.005780.005550.0001746627639636103171.5180.37.30.950.054450.004370.040120.002870.005580.0001139012540335.90.704125.6147.35.60.850.05260.004010.040220.002640.00560.00013312108403360.805101.9175.55.40.580.055530.004360.039150.002390.005570.000124349739235.80.80699.8145.55.70.690.048870.004250.035750.00280.005540.0001514112536335.610775.5133.54.00.570.046130.004950.031980.002730.005550.00014413932335.70.90895.7159.04.10.600.049830.004780.036270.002820.005540.0001418713136335.60.909139.0166.47.10.840.050030.004410.035240.002590.005470.0001319612435335.20.81083.7145.33.70.580.054260.00510.038950.003070.005530.0001438213439335.60.911136.2225.55.90.600.04810.003670.035650.002340.005580.000110411136235.90.712157.0211.78.50.740.050570.003610.037330.002280.00550.0001122110237235.40.71376.3114.45.70.670.056450.005440.038060.002730.005520.0001547011138335.511484.1129.63.90.650.049950.004570.037340.002870.005590.0001519312637335.90.91598.1143.85.40.680.050240.004710.035250.002370.005520.0001320611035235.50.81678.5168.15.60.470.050290.004490.035370.002350.005470.0001220811035235.20.816JCs01-1角闪正长斑岩0176.4677.4102.20.110.067940.001171.22030.024340.129810.00148672481011787802256.2568.4562.70.450.049750.00150.039260.001520.005680.000121835239136.50.80397.5463.483.80.210.066220.001261.178580.02460.128960.001658132379111782904235.1539.525.30.440.050570.002460.039170.001950.005690.00016221653923710574.9309.418.10.240.053480.00160.294510.011220.039720.0008834947262925150688.1564.797.80.160.065680.001041.238790.019360.136540.0009579621818982550753.0102091.60.050.064350.0010.828910.019270.092970.001487532461311573908110.2576.9102.50.190.067190.001041.19680.019610.128810.00116844207999781709264.4136010.00.190.052890.002080.158630.010430.021610.0011332469150913871036.61078128.70.030.066030.0011.15490.015180.126850.00095807327807770511140.6309.6325.50.450.047290.001590.035910.001190.005520.00007645336135.50.4121126139313700.810.046050.001820.035650.001190.005620.000128436136.10.813182.5100745.40.180.059370.001270.341810.018750.040790.0018758154299142581214129.81187177.30.110.066240.0011.205130.01740.131250.00107814178038795615179.0287.9279.20.620.047170.002290.036990.001780.005690.00009587537236.50.616332.2164213.10.200.176240.0019710.504790.194890.430510.0060726181424801723082717239.113389.60.180.117330.001535.915780.088270.364510.0029819161519641320041418503.1158111300.320.134980.001547.286760.087170.390360.0025621641221471121251219149.1495.2360.70.300.122450.001576.729980.088070.397510.0028319921320771221581320147.5662.4410.00.220.143710.003667.41850.150960.374380.0057322724521631820502721131.1265.2224.90.490.049880.001730.037970.00130.005530.000071895638135.60.422514.2145914.70.350.117250.001425.832450.069150.359880.0023119151219511019821123178.6212810200.080.142050.001587.706410.087390.392340.0025522521121971021341224346.3179613.70.190.155950.0019810.00060.13280.463790.0033224121324351224561525346.7150012.20.230.122810.001876.457670.108560.380250.0037119981720401520771726149.4318.1284.90.470.050050.003120.037280.002250.005450.000119710337235.10.727233.0656.4512.90.350.145410.001898.013320.126790.399020.005652293122233142165262881.01318546.90.060.117570.001315.744570.06170.352950.002161920111938919491029323.91104861.40.290.147750.001638.570670.133860.418610.005132320122293142254233081.31594407.20.050.117620.001543.927910.086530.240410.0038819201916191813892031396.9713.2824.50.560.048480.001960.037250.001470.00560.0000812366371360.53267.7903.2446.10.070.148990.001738.540130.136170.413440.00498233413229014223123

图4 剑川富碱岩浆岩主量元素成分图(a)硅-碱图(Middlemost, 1994);(b)硅-钾图(Peccerillo and Taylor, 1976);(c-f)哈克图解. 文献数据:Guo et al., 2005; Huang et al., 2010; Lu et al., 2013, 2015; 洪涛等, 2015; 黄永高等, 2018Fig.4 Major elemental diagrams of the Jianchuan alkaline-rich magmatic rocks(a) total alkalis vs. silica (Middlemost, 1994), (b) potassium vs. silica (Peccerillo and Taylor, 1976), (c-f) Harker variation diagrams. Literature data: Guo et al., 2005; Huang et al., 2010, 2018; Lu et al., 2013, 2015; Hong et al., 2015

图5 剑川富碱岩浆岩球粒陨石标准化稀土元素配分图(a,标准化值据Boynton, 1984)和原始地幔标准化微量元素蛛网图(b,标准化值据Sun and McDonough, 1989)数据来源:Guo et al., 2005; Huang et al., 2010; Lu et al., 2015Fig.5 Chondrite-normalized REE patterns (a, normalization values after Boynton, 1984) and primitive mantle-normalized trace-element spidergrams (b, normalization values after Sun and McDonough, 1989) of the alkali-rich magmatic rocks in JianchuanData sources: Guo et al., 2005; Huang et al., 2010; Lu et al., 2015

图6 剑川富碱岩浆岩Sr-Nd同位素图解(底图据He et al., 2016)Fig.6 Sr-Nd isotopic diagram of the alkali-rich magmatic rocks in Jianchuan (base map after He et al., 2016)

3.3 Sr-Nd同位素地球化学

剑川富碱岩浆岩体Sr-Nd同位素测试结果显示,两类岩石均具有富集的Sr-Nd同位素成分(图6),其中,正长岩的87Sr/86Sr比值为0.7072~0.7073,εNd(t)为-4.2~-3.1,Nd同位素二阶段模式年龄为1.18~1.28Ga(表1);而花岗岩的87Sr/86Sr比值为0.7058~0.7080,εNd(t)为-2.2~-0.2,Nd同位素二阶段模式年龄为0.98~1.16Ga(表1)。

4 讨论

4.1 锆石U-Pb年代学

本文测得剑川花岗岩年龄为36.1~35.1Ma,正长岩年龄为35.8~35.7Ma(图3),表明两类岩石均形成于始新世,与前人研究的滇西金沙江-红河富碱岩浆岩带的埃达克质花岗岩(北衙、马厂箐、巍山、永胜和白莲村等)和钾玄质正长岩(喇叭山、六合和宾川等)成岩时限一致。统计前人已发表的年龄数据,滇西新生代富碱岩浆岩形成时代集中分布37~32Ma(Luetal., 2012; Dingetal., 2016; Heetal., 2016; 刘金宇等, 2017; 黄永高等, 2018)。

测年结果还表明,锆石老核的年龄在138~2456Ma(图3c, d)之间,包括251~297Ma、753~971Ma、1857~1985Ma和2213~2456Ma等4个年龄组。这些年龄值反映继承锆石源于多种不同时代的岩石,与扬子板块西缘多期岩浆或变质作用事件一致(洪涛等, 2015),进一步证实其扬子的亲缘性。

图7 剑川富碱岩浆岩的埃达克岩判别图(a) Sr/Y-Y图;(b) La/Yb-Yb图(Lu et al., 2013);(c) SiO2-Mg#图(Hou et al., 2004);(d) Zr/Sm-Nb/Ta图(Foley et al., 2002).文献数据:Guo et al., 2005; Huang et al., 2010; Lu et al., 2013, 2015; 洪涛等, 2015; 黄永高等, 2018Fig.7 Adakite discrimination diagrams of the alkali-rich magmatic rocks in Jianchuan(a) Sr/Y vs. Y; (b) La/Yb vs. Yb (Lu et al., 2013); (c) SiO2 vs. Mg# (Hou et al., 2004), and (d) Zr/Sm vs. Nb/Ta (Foley et al., 2002). Data sources: Guo et al., 2005; Huang et al., 2010, 2018; Lu et al., 2013, 2015; Hong et al., 2015

4.2 岩石成因

4.2.1 埃达克质花岗岩成因

剑川的花岗斑岩和石英二长斑岩具有高SiO2、Al2O3、Sr、Sr/Y、La/Yb和低的Y、Yb含量(表1),呈现埃达克质岩浆的属性(图7a)。目前,埃达克质岩浆的成因主要有4种解释:(1)俯冲板片部分熔融的产物(Defantetal., 1990);(2)直接来源于交代地幔楔的初始玄武岩浆经历分离结晶和地壳混染的产物(Castilloetal., 1999; Macphersonetal., 2006);(3)拆沉下地壳的部分熔融(Kay and Kay, 1993; Xuetal., 2002);(4)增厚基性下地壳的部分熔融(Atherton and Petford, 1993; Chungetal., 2003; Houetal., 2004)。

源于俯冲板片部分熔融的埃达克质岩浆通常富钠(K2O/Na2O<0.4),且Sr-Nd同位素特征与MORB相似(Martinetal., 2005)。但是剑川花岗岩有着高的K2O/Na2O比值(0.86~1.22)和明显不同于MORB的Sr-Nd同位素特征(图6),表明该埃达克质岩浆并不是俯冲板片熔融的产物。然而,交代地幔直接熔融形成的是低硅埃达克质岩浆,通常有低SiO2(<60%)和高MgO含量(>4.0%)(Martinetal., 2005)。这些特征与剑川花岗岩的特征明显不一致(表1),应排除此种岩浆成因。此外,已有地震研究资料表明现今滇西地壳厚度为40~55km(Xuetal., 2007; Lietal., 2008)。赵欣等(2003)利用滇西富碱侵入岩体中基性捕掳体成分估算得古新世地壳厚度大约为55km,说明自古新世以来滇西地壳厚度没有发生明显减薄。因此,拆沉下地壳部分熔融形成剑川埃达克质岩浆的可能性也可以排除。那么剑川埃达克质岩浆最可能的成因是形成于增厚的基性下地壳的部分熔融,这一认识也获得同位素和微量元素模拟的支撑(图6、图7a, b)。

剑川花岗岩的Sr-Nd同位素组成和同时期富碱侵入岩中角闪岩捕掳体同位素相似,这种角闪岩捕掳体可能代表了扬子西缘新生下地壳的组分(Houetal., 2017; 周晔等, 2017)。在(87Sr/86Sr)i-εNd(t)图解中(图6)花岗岩均落在角闪岩与金沙江洋中脊玄武岩(MORB)的演化线上。同时,花岗岩具有高SiO2含量和低Mg#值,在SiO2-Mg#图中(图7c; Houetal., 2004)样品均落在实验获得的增厚下地壳熔融成因的区域。样品微量元素结果显示高Sr/Y和La/Yb,低Y和HREE含量(图7),表明熔融过程中石榴石作为主要残留相导致重稀土明显分异(Rappetal., 1995)。相对平坦的HREE配分模式说明在埃达克质岩浆形成过程中角闪石相较石榴石占据主导作用(Moyen, 2009)。且样品具有低的Nb/Ta比值,在Zr/Sm-Nb/Ta图中(图7b; Foleyetal., 2002)样品均落在角闪岩部分熔融区域。说明剑川花岗岩很可能源自石榴角闪岩相增厚下地壳的部分熔融。

表3剑川富碱岩浆岩的Hf同位素成分

Table 3 Zircon Hf isotopic data of the Jianchuan alkali-rich magmatic rocks

测点号176Yb/177Hf176Lu/177Hf176Hf/177Hf±2σ176Hf/177Hf (i)εHf(0)εHf(t)tDM (Ma)tDMC (Ma)fLu/Hf16JCs20-1花岗斑岩,t=36.1Ma10.0203950.0008230.282790130.2827890.61.46521025-0.9820.0210610.0008480.282815160.2828151.52.3617968-0.9730.0164760.0006690.282818150.2828171.62.4610962-0.9840.0220260.0008150.282837160.2828372.33.1585917-0.9850.0282710.0011370.282813140.2828121.42.2625974-0.9760.0213210.0008370.282845120.2828442.63.3575901-0.9770.0266780.0009270.282855160.2828552.93.7561877-0.9780.0228300.0009030.282801130.2828001.01.86381000-0.9790.0222230.0008820.282787130.2827870.51.36571031-0.97100.0273910.0010630.282807150.2828061.22.0632986-0.97110.0208800.0008330.282796130.2827950.81.66441012-0.97120.0302020.0011570.282788170.2827870.61.36611030-0.97130.0191220.0007510.282805160.2828041.21.9630991-0.98140.0212950.0007940.282791130.2827910.71.56491022-0.98150.0144090.0005690.282805140.2828041.21.9627991-0.98160.0225390.0009130.282822150.2828221.82.6608952-0.97170.0191940.0007590.282801160.2828001.01.86351000-0.98180.0398780.0013270.282871290.2828703.54.3545842-0.9614YL01-2花岗斑岩,t=35.1Ma40.0243660.0006340.28282200.2828221.82.5604953-0.9880.0235540.0006440.28278800.2827880.61.36511030-0.98110.0288340.0006830.28287800.2828783.84.5525826-0.98140.0123110.0004390.28279400.2827940.81.66391015-0.99190.0545870.0017110.28281800.2828171.62.4626962-0.95280.0207740.0007520.28282400.2828231.82.6603949-0.98290.0328220.0009210.28283600.2828362.33.0588921-0.97330.0082770.0002680.28285000.2828492.73.5559890-0.9914JP08-1透辉石正长斑岩,t=35.7Ma10.0223930.0007370.282819260.2828181.72.4610960-0.9820.0171240.0006180.282775210.2827740.10.96691059-0.9830.0097600.0003820.282770250.282770-0.10.76721070-0.9940.0139290.0005170.282793230.2827930.81.56421017-0.9850.0136700.0005260.282734210.282734-1.3-0.67251151-0.9860.0155450.0005380.282754240.282753-0.60.16981107-0.9870.0099210.0003750.282816220.2828161.52.3608966-0.9980.0213620.0007160.282756230.282756-0.60.26971101-0.9890.0100100.0003860.282743200.282743-1.0-0.27091130-0.99100.0143320.0004720.282763270.282763-0.30.56831085-0.99110.0136940.0004900.282785220.2827850.51.26531036-0.99120.0129170.0005710.282852170.2828512.83.6561885-0.98130.0243960.0011130.282809230.2828081.32.1630983-0.97140.0152050.0006290.282836180.2828362.33.0584920-0.98150.0197710.0007740.282766220.282765-0.20.56851079-0.98160.0184690.0007270.282800190.2827991.01.76371003-0.9816JCs01-1角闪正长斑岩,t=35.8Ma20.0335140.0012790.282877130.2828763.74.5536829-0.9630.0163400.0007030.282863140.2828633.24.0547859-0.98110.0266810.0010220.282854160.2828542.93.7564880-0.97120.0503050.0018280.282705180.282703-2.4-1.67931219-0.94150.0194160.0008400.282841140.2828412.43.2580909-0.97210.0516240.0019080.282871130.2828703.54.3553842-0.94260.0572330.0019370.282838160.2828372.33.1602918-0.94310.0457610.0011670.282775190.2827740.10.86801060-0.96

图8 剑川富碱岩浆岩锆石U-Pb年龄-εHf(t)同位素图解文献数据:Lu et al., 2013; Ding et al., 2016. 扬子克拉通西缘中-古生代的岩浆锆石数据来源: Huang et al., 2009; Sun et al., 2009; Xu et al., 2008Fig.8 Zircon U-Pb age vs. εHf(t) diagram of the alkali-rich magmatic rocks in JianchuanData sources: Lu et al., 2013; Ding et al., 2016. Data for Pre-Cenozoic magmatic zircons from western Yangtze Craton are from Huang et al., 2009; Sun et al., 2009; Xu et al., 2008

新元古代是扬子板块西缘新生下地壳的主要形成时期(Sunetal., 2009)。花岗岩锆石εHf(t)值为+1.3~+4.5,相应的二阶段模式年龄为0.83~1.03GMa(表3、图8),表明该埃达克质岩浆是新元古代形成的新生镁铁质下地壳熔融的产物。综上所述,具有埃达克质属性的剑川花岗岩是增厚的石榴角闪岩相新生下地壳部分熔融的产物。此外,与典型的埃达克岩相比,剑川埃达克质花岗岩具有高钾的特征,可能是区域钾质-超钾质岩浆注入到新生下地壳熔体中发生岩浆混合作用的结果(Guoetal., 2007; Yangetal., 2015)。

4.2.2 正长岩成因

剑川正长斑岩和粗面岩具有较低的SiO2含量(53.94%~63.51%),较高的K2O含量(6.12%~7.10%)和K2O/Na2O比值(1.30~2.68),属钾玄质的正长岩。前人对正长岩类的成因提出多种模式:(1)高压条件下长英质地壳物质的熔融(Huang and Wyllie, 1981);(2)与俯冲相关的交代富集岩石圈地幔的熔融(Lynchetal., 1993),或碱性玄武质岩浆分离结晶的产物(Thorpe and Tindle, 1992; Yangetal., 2005);(3)岩浆混合作用形成,幔源镁铁质岩浆与其诱发熔融的长英质岩浆混合后结晶分异的产物(Riishuusetal., 2005; 杨进辉等, 2007),或幔源硅不饱和的碱性岩浆和壳源花岗质岩浆混合形成(Dorais, 1990)。目前多数学者主张正长岩的形成有幔源组分的贡献(Harrisetal., 1999)。

剑川正长岩可能是交代富集的岩石圈地幔部分熔融形成的基性岩浆(滇西钾质-超钾质岩)演化的产物,证据如下:(1)滇西新生代正长岩与基性钾质-超钾质岩在时空分布上具有非常密切的关系(图1a)。时间上,前人通过全岩、黑云母和钾长石等矿物的40Ar-39Ar定年获得区域新生代基性岩的形成时代为36.6~32.6Ma(Guoetal., 2005; 李勇, 2012; Huangetal., 2010; Luetal., 2015),其中剑川江尾塘橄榄粗玄岩(JC-JWT)获得全岩40Ar-39Ar年龄为32.6Ma(李勇, 2012),与正长岩锆石U-Pb年龄一致(36.5~33.4Ma; Luetal., 2012)。空间上基性岩总是与正长岩伴生(图1),在剑川江尾塘、新华、马登和甸心村等地出露有始新世橄榄粗玄岩、碱性玄武质和煌斑岩等(李勇, 2012; Luetal., 2015)。(2)在哈克图解中,正长岩和基性岩的K2O、MgO、CaO、Fe2O3T和Al2O3与SiO2都呈现较好的线性关系(图4b-f),反映两者之间连续的岩浆演化过程。同时,正长岩和基性岩具有相似的、平行的稀土和微量元素配分模式。在球粒陨石标准化图中(图5a),两者均强烈富集轻稀土(LREE),具有明显的轻重稀土分馏特征,且样品都没有明显的Eu异常。在微量元素原始地幔归一化图中(图5b),均显示LILEs和Pb富集、HFSEs亏损等特征。这一系列相似的元素特征说明两者具有一致的岩浆源区。(3)正长岩与基性岩具有相似的Sr-Nd同位素组成(图6)。按照Depaolo and Wasserburg (1976) 计算方法可知t=36Ma时,正长岩εSr(t)为+35.40~+38.04,相应εNd(t)在-3.05~-4.16之间,而正的εSr(t)和负的εNd(t)性质为富集地幔所特有的同位素特征。

4.3 地球动力学意义

前人研究认为,印度-亚洲大陆约在新生代初开始碰撞后,青藏高原东缘进入隆升和大规模的陆内变形时期,形成长达1000km的金沙江-红河走滑拉分断裂带。沿该断裂带及其两侧较宽的范围内,成群产出钾质-超钾质火山岩和中酸性富碱高钾的浅成侵入岩,即金沙江-红河富碱岩浆岩带(张玉泉等, 1987; 邓万明等, 1998)。已有的不同方法测得年代学数据显示其成岩年龄集中分布在37~32Ma之间(Guoetal., 2005; Huangetal., 2010; Luetal., 2012, 2015; Dingetal., 2016)。剑川花岗岩和正长岩的侵位年龄(36~35Ma)与金沙江-红河富碱岩浆岩带岩浆活动峰期年龄高度一致,为始新世晚期。

研究区构造上位于盐源-金平富碱斑岩铜金成矿带,剑川富碱岩浆岩成岩峰期年龄与北衙等多金属矿集区成矿相关富碱斑岩的时代相近(Luetal., 2012; Houetal., 2017)。且剑川花岗岩具有与区域成矿富碱斑岩相似的埃达克质岩浆属性和同位素特征(侯增谦等, 2004, 2015; Houetal., 2017)。此外,研究区已有桃花铁铜矿床和桃花铅锌多金属矿床(陈喜峰等, 2013; 周云凤和李治平, 2013)的相关报道;在野外地质调查过程中也发现石鼓镇桃花岩体(石英二长斑岩)中局部发育大量的黄铁矿化和接触带角岩化-硅化-绢英岩化等特点。新一轮的区域地质调查显示(黄永高等, 2018),剑川-石鼓等地发现明显的Au、Pb、Zn、Cu、Ag等矿化元素异常,且在与金沙江断裂带平行的NW-SE向呈串珠状展布,具有以斑岩体与围岩接触带为中心的不对称带状分布特点。可以推测,在剑川石鼓地区的花岗岩可能具有形成斑岩-热液型多金属矿床的成矿潜力。

花岗岩和正长岩在滇西形成时代一致,在空间分布上密切伴生,表明两者受控于相同的构造过程。如上述讨论,正长岩和基性岩岩浆的形成都需要交代岩石圈地幔的部分熔融过程。同时,埃达克质岩浆起源于增厚基性下地壳的部分熔融。交代大陆岩石圈地幔和增厚下地壳的熔融过程都需要大量的地幔热(Thompson and Connolly, 1995; Petfordetal., 2000)。然而,按照现今地热梯度在下地壳和岩石圈地幔深度积累的放射热无法提供诱发熔融的热量(Turneretal., 1993; Houetal., 2004)。剑川花岗岩和正长岩锆石测年结果显示形成于36~35Ma,属于印亚大陆碰撞的晚碰撞阶段(侯增谦等, 2006a, b),在此时期滇西并无洋壳俯冲作用发生,所以不存在洋壳脱水熔融。那么,最可能导致岩石圈地幔和增厚下地壳熔融的机制是岩石圈地幔的减薄,使热的软流圈物质减压、上涌(Thompson and Connolly, 1995),从而提供巨量的热。岩石圈地幔减薄可以通过两种方式实现:岩石圈地幔的整体拆沉(Bird, 1979; Kay and Kay, 1993)或岩石圈下部发生对流减薄(England and Houseman, 1989; Platt and England, 1994; Houseman and Molnar, 1997)。在滇西,钾质-超钾质岩浆起源于富集岩石圈地幔(Guoetal., 2005; Huangetal., 2010; Luetal., 2015),暗示岩石圈地幔并未被全部剥离。从区域而言钾质-超钾质岩浆体积较小,也未有源于软流圈的岩浆活动报道,所以岩石圈地幔整体拆沉模式在研究区并不适用。同时,在滇西地区晚始新世-渐新世时期形成大量伸展背景下的裂谷盆地(图1a; Chungetal., 1998),可能是深部岩石圈地幔对流减薄的响应(England and Houseman, 1989; Platt and England, 1994)。因此,岩石圈地幔减薄的机制最有可能是地幔的下部发生对流减薄,从而导致软流圈物质上涌,使残留的岩石圈地幔和增厚下地壳发生部分熔融。

扬子板块西缘之下的岩石圈地幔在1000~800Ma经历了原特提斯洋板块俯冲(Zhang, 2017),受俯冲流体的交代作用影响,形成了富集的岩石圈地幔(Zhouetal., 2002a, b)。自新生代印度与欧亚大陆发生碰撞,使滇西地壳和岩石圈大幅度缩短并加厚(Xuetal., 2007; Lietal., 2008)。在37~32Ma之间,加厚的岩石圈超过最大稳定性,岩石圈地幔发生减薄,热的软流圈物质上涌。地球物理研究也证实,新生代滇西存在着软流圈地幔物质上涌(刘建华等, 1989),支持了岩石圈地幔减薄的观点。在这一过程中上涌的热的软流圈取代了冷的岩石圈地幔的下部,使残留的岩石圈地幔发生熔融形成了剑川地区的基性岩浆(煌斑岩和钾质-超钾质火山岩),经分离结晶演化形成正长岩。幔源熔体因密度差而在地壳底部发生底垫,并且幔源的热的基性岩浆进入增厚的下地壳,诱发其发生部分熔融形成了具有埃达克质岩浆属性的花岗岩。

5 结论

(1)剑川富碱岩浆岩体锆石U-Pb定年得成岩年龄为35.1~36.1Ma,是滇西金沙江-红河富碱岩浆岩带内岩浆活动主要时期的产物。

(2)剑川富碱岩浆岩体据矿物组合和地球化学特征可划分为花岗岩和正长岩两种岩石类型,都具有富碱、高钾的地球化学特征。花岗岩起源于增厚的镁铁质新生下地壳的部分熔融,正长岩是交代富集的岩石圈地幔熔融产生的基性岩浆演化的产物。

(3)剑川花岗岩和正长岩形成于印度与欧亚大陆碰撞的晚碰撞阶段。是由岩石圈地幔发生对流减薄导致了软流圈物质的上涌,从而使残留的岩石圈地幔和增厚下地壳发生熔融,并经一定程度的分异演化,最后在浅成环境侵位的产物。

致谢感谢唐菊兴研究员、张开均研究员和另一位匿名评审专家提出宝贵的修改意见。本研究在野外调查和室内实验分析工作中得到中国地质大学(北京)马睿、张驰、李鑫、刘思岐和高雷等同学的热心帮助,在此表示衷心感谢!

猜你喜欢

剑川岩浆岩斑岩
千年繁华后的平淡剑川弥井村
八采区岩浆岩研究分析
辽宁调兵山西调斑岩型钼矿床特征及找矿标志
柴北缘阿木尼克山地区斑岩系Cu、Mo-Pb、Zn、Ag-Au成矿模型初步研究
剑川娃
斑岩型矿床含矿斑岩与非含矿斑岩鉴定特征综述
岩型矿床含矿斑岩与非含矿斑岩鉴定特征综述
剑川花椒的主要栽培技术及病虫害防治
印尼南苏拉威西省桑加卢比铜多金属矿地质成矿条件分析
永胜煤矿综合机械化回采天然焦探讨