APP下载

数形结合思想在函数与导数中的应用

2019-04-03袁小幼

高中生·天天向上 2019年2期
关键词:函數填空题数形

袁小幼

编者按:数形结合思想是数学解题的常用思想方法.把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过数形结合,可以使复杂问题简单化、抽象问题具体化,从而达到优化解题途径的目的.根据题型特点,对数形结合思想的考查在选择题和填空题中,以数到形的转化为主,而在解答题中,以形到数的转化为主.

函数的对应法则可以是解析式,也可以是图像.所以,函数是一个数形结合体,在解答函數问题时常会用到数形结合思想.

猜你喜欢

函數填空题数形
两角和与差的三角函数B卷
数形结合 理解坐标
数形结合 相得益彰
数形结合百般好
如何求函数y=Asin(ωx+φ)中φ的值
《二次函数》拓展精练
如何求三角函数的周期