2018 年度中国科学十大进展简介
2019-03-21
“中国科学十大进展”遴选活动由科技部基础研究管理中心牵头举办,截至 2019 年已举办 14 届。本年度,《中国基础科学》《科技导报》《中国科学院院刊》《中国科学基金》和《科学通报》5 家编辑部共推荐了 353 项科学研究进展(所推荐的科学进展须是在 2017 年 12 月 1 日至 2018 年 11 月 30 日期间正式发表的研究成果),由两院院士、“973”计划顾问组和咨询组专家、“973”计划项目首席科学家、国家重点实验室主任、部分重点研发计划项目负责人等专家学者经过初选和终选两轮投票选出以下 10 项研究。该项活动旨在加强对我国重大基础研究进展的宣传,激励广大科技工作者的科学热情和奉献精神,促进公众更加理解、关心和支持科学,在全社会营造良好的科学氛围。该项活动已成为我国基础研究传播工作的一个品牌,在科技界产生了良好反响。
1 基于体细胞核移植技术成功克隆出猕猴
非人灵长类动物是与人类亲缘关系最近的动物。因可短期内批量生产遗传背景一致且无嵌合现象的动物模型,体细胞克隆技术被认为是构建非人灵长类基因修饰动物模型的最佳方法。自 1997 年克隆羊“多莉”报道以来,虽有多家实验室尝试体细胞克隆猴研究,却都未成功。
中国科学院神经科学研究所/脑科学与智能技术卓越创新中心孙强和刘真研究团队经过 5 年攻关最终成功得到了两只健康存活的体细胞克隆猴。他们研究发现,联合使用组蛋白 H3K9me3 去甲基酶 Kdm4d 和 TSA 可以显著提升克隆胚胎的体外囊胚发育率及移植后受体的怀孕率。在此基础上,他们用胎猴成纤维细胞作为供体细胞进行核移植,并将克隆胚胎移植到代孕受体后,成功得到两只健康存活克隆猴;而利用卵丘颗粒细胞为供体细胞核的核移植实验中,虽然也得到了两只足月出生个体,但这两只猴很快夭折。遗传分析证实,上述两种情况产生的克隆猴的核 DNA 源自供体细胞,而线粒体 DNA 源自卵母细胞供体猴。
体细胞克隆猴的成功是该领域从无到有的突破,该技术将为非人灵长类基因编辑操作提供更为便利和精准的技术手段,使得非人灵长类可能成为可以广泛应用的动物模型,进而推动灵长类生殖发育、生物医学以及脑认知科学和脑疾病机理等研究的快速发展。德国科学院院士 Nikos K. Logothetis 以“克隆猴:基础和生物医学研究的一个重要里程碑(Cloning NHP: A Major Milestone in Basic and Biomedical Research)”为题发表评论认为,这项工作证明了利用体细胞核生殖克隆猕猴的可行性,打破了技术壁垒并开创了使用非人灵长类动物作为实验模型的新时代,是生物医学研究领域真正精彩的里程碑。
2 创建出首例人造单染色体真核细胞
真核生物细胞一般含有多条染色体,如人有 46 条、小鼠 40 条、果蝇 8 条、水稻 24 条等。这些天然进化的真核生物染色体数目是否可人为改变、是否可以人造一个具有正常功能的单染色体真核生物是生命科学领域的前沿科学问题。
中国科学院分子植物科学卓越创新中心/植物生理生态研究所覃重军和薛小莉研究组、赵国屏研究组与中国科学院生物化学与细胞生物学研究所周金秋研究组等合作,以天然含有 16 条染色体的真核生物酿酒酵母为研究材料,采用合成生物学“工程化”方法和高效使能技术,在国际上首次人工创建了自然界不存在的简约化的生命——仅含单条染色体的真核细胞。该研究表明天然复杂生命体系可以通过人工干预变简约,甚至可以人工创造全新的自然界不存在的生命。
Nature、The Scientist 等期刊发表评论认为,这可能是迄今为止动作最大的基因组重构,这些遗传改造的酵母菌株是研究染色体生物学重要概念的强大资源,包括染色体的复制、重组和分离。
3 揭示抑郁发生及氯胺酮快速抗抑郁机制
抑郁症严重损害了患者的身心健康,是现代社会自杀问题的重要诱因,给社会和家庭带来巨大的损失。然而传统抗抑郁药物起效缓慢(6—8 周以上),并且只在 20% 左右的患者中起效,这提示目前对抑郁症机制的了解还没有触及其核心。近年来在临床上意外发现麻醉剂氯胺酮在低剂量下具有快速(1 小时内)、高效(在 70% 难治型患者中起效)的抗抑郁作用,被认为是精神疾病领域近半个世纪最重要的发现。然而,氯胺酮具有成瘾性,副作用大,无法长期使用。因此,理解氯胺酮快速抗抑郁的机制已成为抑郁症研究领域的“圣杯”,因为它将提示抑郁症的核心脑机制,并为研发快速、高效、无毒的抗抑郁药物提供科学依据。
2018 年,浙江大学医学院胡海岚研究组在这一领域的研究取得了突破性进展:在抑郁症的神经环路研究中,该研究组发现大脑中反奖赏中心——外侧缰核中的神经元活动是抑郁情绪的来源。这一区域的神经元细胞通过其特殊的高频密集的“簇状放电”,抑制大脑中产生愉悦感的“奖赏中心”的活动。通过光遗传的技术手段,他们直接证明缰核区的簇状放电是诱发动物产生绝望和快感缺失等行为表现的充分条件。针对抑郁的分子机制,该研究组发现这种簇状放电方式是由 NMDAR 型谷氨酸受体介导的,作为 NMDAR 的阻断剂,氯胺酮的药理作用机制正是通过抑制缰核神经元的簇状放电,高速高效地解除其对下游“奖赏中心”的抑制,从而达到在极短时间内改善情绪的功效。
同时,该研究组对产生簇状放电的细胞及分子机制做出了更深入的阐释。通过高通量的定量蛋白质谱技术,他们发现抑郁的形成伴随着胶质细胞中钾离子通道 Kir 4.1 的过量表达。而 Kir 4.1 通道对抑郁的调控植根于缰核组织中胶质细胞对神经元的致密包绕这一组织学基础。在神经元-胶质细胞相互作用的狭小界面中,Kir 4.1 在胶质细胞上的过表达引发神经元细胞外的钾离子浓度降低,从而诱发神经元细胞的超极化、T-VSCC 钙通道活化,最终导致 NMDAR 介导的簇状放电。
上述研究对于抑郁症这一重大疾病的机制做出了系统性的阐释,颠覆了以往抑郁症核心机制上流行的“单胺假说”,并为研发氯胺酮的替代品、避免其成瘾等副作用提供了新的科学依据。同时,该研究所鉴定出的 NMDAR、Kir 4.1 钾通道、T-VSCC 钙通道等可作为快速抗抑郁的分子靶点,为研发更多、更好的抗抑郁药物或干预技术提供了崭新的思路,对最终战胜抑郁症具有重大意义。
Science、Scientific American 等期刊对该工作进行了新闻报道,称“这是一项惊人的发现”。
4 研制出用于肿瘤治疗的智能型 DNA 纳米机器人
利用纳米医学机器人实现对人类重大疾病的精准诊断和治疗是科学家们追逐的一个伟大梦想。国家纳米科学中心聂广军、丁宝全和赵宇亮研究组与美国亚利桑那州立大学颜灏研究组等合作,在活体内可定点输运药物的纳米机器人研究方面取得突破,实现了纳米机器人在活体(小鼠和猪)血管内稳定工作并高效完成定点药物输运功能。
研究人员基于 DNA 纳米技术构建了自动化 DNA机器人,在机器人内装载了凝血蛋白酶——凝血酶。该纳米机器人通过特异性 DNA 适配体功能化,可以与特异表达在肿瘤相关内皮细胞上的核仁素结合,精确靶向定位肿瘤血管内皮细胞;并作为响应性的分子开关,打开 DNA 纳米机器人,在肿瘤位点释放凝血酶,激活其凝血功能,诱导肿瘤血管栓塞和肿瘤组织坏死。
这种创新方法的治疗效果在乳腺癌、黑色素瘤、卵巢癌及原发肺癌等多种肿瘤中都得到了验证。并且小鼠和 Bama 小型猪实验显示,这种纳米机器人具有良好的安全性和免疫惰性。上述研究表明,DNA 纳米机器人代表了未来人类精准药物设计的全新模式,为恶性肿瘤等疾病的治疗提供了全新的智能化策略。
Nature Reviews Cancer、Nature Biotechnology 等期刊评论认为该工作为里程碑式的工作;美国 The Scientist 期刊将该工作与同性繁殖、液体活检、人工智能一起,评选为 2018 年度世界四大技术进步。
5 测得迄今最高精度的引力常数 G 值
牛顿万有引力常数 G 是人类认识的第一个基本物理常数,其在物理学乃至整个自然科学中扮演着十分重要的角色。两个世纪以来,实验物理学家们围绕引力常数 G 值的精确测量付出了巨大而艰辛的努力,但其测量精度目前仍然是所有物理学常数中最低的。按照牛顿万有引力定律,G 应该是一个固定的常数,不因测量地点和测量方法的不同而变化。但是,当前国际上不同研究小组用不同方法测得的 G 值却不吻合。
为了深入研究这一问题,华中科技大学物理学院引力中心罗俊、杨山清和邵成刚研究组自 2009 年开始同时采用两种相互独立的方法——扭秤周期法和扭秤角加速度反馈法来测量 G 值。历经多年的艰苦努力,2018 年两种方法均获得了迄今为止国际最高的测量精度(G 值分别为 6.674184 ×10-11和 6.674484 ×10-11m3· kg-1· s-2,相对标准偏差分别为百万分之 11.64 和 11.61),更为关键的是两个结果在 3 倍标准差范围内吻合。
Nature 以“引力常数的创纪录精度测量”(Gravity Measured with Record Precision)为题发表评论认为,这项工作是迄今为止用两种独立的方法测定引力常数的不确定度最小的结果,为揭示造成万有引力常数测量差异的原因提供了非常好的机遇,同时也为进一步测量获得引力常数的真值提供了机遇;并评价这项工作是“精密测量领域卓越工艺的典范”。
6 首次直接探测到电子宇宙射线能谱在1 TeV 附近的拐折
高能宇宙射线中的负电子和正电子在其行进过程中会很快损失能量,因此其测量数据可以作为高能物理过程的一个探针,甚至用于研究暗物质粒子的湮灭或衰变现象。基于地基切伦科夫伽马射线望远镜阵列的间接探测获得的电子宇宙射线能谱在 1 TeV(1 TeV=1000 GeV,1 万亿电子伏特)附近存在有拐折的迹象,但其系统误差很大。
我国首颗天文卫星“悟空号”(DAMPE)的电子宇宙射线的能量测量范围比起国外的空间探测设备(如AMS-02、Fermi-LAT)有显著提高,拓展了人类在太空中观察宇宙的窗口。DAMPE 合作组基于悟空号前530天的在轨测量数据,以前所未有的高能量分辨率和低本底对 25 GeV—4.6 TeV 能量区间的电子宇宙线能谱进行了精确的直接测量。悟空号所获得能谱可以用分段幂律模型而不是单幂律模型很好地拟合,明确表明在 0.9 TeV 附近存在一个拐折,证实了地面间接测量的结果。该拐折反映了宇宙中高能电子辐射源的典型加速能力,其精确的下降行为对于判定部分电子宇宙射线是否来自于暗物质起着关键性作用。此外,悟空号所获得的能谱在 1.4 TeV 附近呈现出流量异常迹象,尚需进一步的数据来确认是否存在一个精细结构。
瑞典皇家科学院院士、诺贝尔物理学奖评奖委员会秘书 Lars Bergstrom 教授肯定了这是首次直接测量到这一拐折。美国约翰霍普金斯大学 Marc Kamionkowski 教授评论认为,这是 2018 年度最令人激动的科学进展之一。
7 揭示水合离子的原子结构和幻数效应
离子与水分子结合形成水合离子是自然界最为常见和重要的现象之一,在很多物理、化学、生物过程中扮演着重要的角色。早在 19 世纪末,人们就意识到离子水合作用的存在并开始了系统的研究。100 多年来,水合离子的微观结构和动力学一直是学术界争论的焦点,至今仍没有定论。究其原因,关键在于缺乏原子尺度的实验表征手段以及精准可靠的计算模拟方法。
北京大学物理学院量子材料科学中心江颖、王恩哥和徐莉梅研究组与化学与分子工程学院高毅勤研究组等合作,开发了一种基于高阶静电力的新型扫描探针技术,刷新了扫描探针显微镜空间分辨率的世界纪录,实现了氢原子的直接成像和定位,在国际上首次获得了单个钠离子水合物的原子级分辨图像,并发现特定数目的水分子可以将水合离子的迁移率提高几个量级,这是一种全新的动力学幻数效应。结合第一性原理计算和经典分子动力学模拟,他们发现这种幻数效应来源于离子水合物与表面晶格的对称性匹配程度,而且在室温条件下仍然存在,并具有一定的普适性。
该工作首次澄清了界面上离子水合物的原子构型,并建立了离子水合物的微观结构和输运性质之间的直接关联,颠覆了人们对于受限体系中离子输运的传统认识。这对离子电池、防腐蚀、电化学反应、海水淡化、生物离子通道等很多应用领域都具有重要的潜在意义。
Nature Reviews Chemistry 主编 David Schilter 发表评论文章认为,这项研究获得了“堪称完美的水合离子结构和动力学信息”。
8 创建出可探测细胞内结构相互作用的纳米和毫秒尺度成像技术
真核细胞内,细胞器和细胞骨架进行着高度动态而又有组织的相互作用,以协调复杂的细胞功能。观测这些相互作用,需要对细胞内环境进行非侵入式、长时程、高时空分辨、低背景噪声的成像。
为了实现这些正常情况下相互对立的目标,中国科学院生物物理研究所李栋研究组与美国霍华德休斯医学研究所 Jennifer Lippincott-Schwartz 和 Eric Betzig 等合作,发展了掠入射结构光照明显微镜(GI-SIM)技术,该技术能够以 97 纳米分辨率、每秒 266 帧对细胞基底膜附近的动态事件连续成像数千幅。
研究人员利用多色 GI-SIM 技术揭示了细胞器-细胞器、细胞器-细胞骨架之间的多种新型相互作用,深化了对这些结构复杂行为的理解。微管生长和收缩事件的精确测量有助于区分不同的微管动态失稳模式。内质网(ER)与其他细胞器或微管之间的相互作用分析揭示了新的内质网重塑机制,如内质网搭载在可运动细胞器上。而且,研究发现内质网-线粒体接触点可促进线粒体的分裂和融合。
中国科学院外籍院士、美国杜克大学王小凡教授评论认为,这项工作发展了一项可视化活细胞内的细胞器与细胞骨架动态相互作用和运动的新技术,将会把细胞生物学带入一个新时代,有助于更好地理解活细胞条件下的分子事件,也提供了一个从机制上洞察关键生物过程的窗口,可对生命科学整个学科产生重大影响。
9 调控植物生长—代谢平衡 实现可持续农业发展
通过增加无机氮肥施用量来提高作物的生产力,虽能保障全球粮食安全,但也加剧了对生态环境的破坏,因此提高作物氮肥利用效率至关重要。这需要对植物生长发育、氮吸收利用以及光合碳固定等协同调控机制有更深入的了解。
中国科学院遗传与发育生物学研究所傅向东研究组与合作者的研究显示,水稻生长调节因子 GRF4 和生长抑制因子 DELLA 相互之间的反向平衡调节赋予了植物生长与碳-氮代谢之间的稳态共调节。GRF4 促进并整合了植物氮素代谢、光合作用以及生长发育,而DELLA 抑制了这些过程。作为“绿色革命”品种典型特征的 DELLA 蛋白高水平累积使其获得了半矮化优良农艺性状,但是却伴随着氮肥利用效率降低。通过将 GRF4-DELLA 平衡向 GRF4 丰度的增加倾斜,可以在维持半矮化优良性状的同时提高“绿色革命”品种的氮肥利用效率并增加谷物产量。因此,对植物生长和代谢协同调控是未来可持续农业和粮食安全的一种新的育种策略。
Nature 发表评论文章认为,该育种策略宣告了“一场新的绿色革命即将到来”。
10 将人类生活在黄土高原的历史推前至距今 212 万年
人类的起源和演化是重大世界前沿科学问题,国际上公认的非洲以外最老旧石器地点是格鲁吉亚的德马尼西遗址,年代为距今 185 万年。由中国科学院广州地球化学研究所朱照宇、中国科学院古脊椎动物与古人类研究所黄慰文和英国埃克塞特大学 Robin Dennell 领导的团队历经 13 年研究,在陕西省蓝田县发现了一处新的旧石器地点——上陈遗址。
研究人员综合运用黄土-古土壤地层学、沉积学、矿物学、地球化学、古生物学、岩石磁学和高分辨率古地磁测年等多学科交叉技术方法测试了数千组样品,建立了新的黄土-古土壤年代地层序列,并在早更新世 17 层黄土或古土壤层中发现了原地埋藏的 96 件旧石器,包括石核、石片、刮削器、钻孔器、尖状器、石锤等,其年龄约 126 万年至 212 万年。连同该团队前期将蓝田公王岭直立人年代由原定距今 115 万年重新定年为距今 163 万年的结果,上陈遗址 212 万年前最古老石器的发现将蓝田古人类活动年代推前了约 100 万年,这一年龄比德马尼西遗址年龄还老 27 万年,这使上陈成为非洲以外最老的古人类遗迹地点之一。
这将促使科学家重新审视早期人类起源、迁徙、扩散和路径等重大问题。此外,世界罕见的含有 20 多层旧石器文化层的连续黄土-古土壤剖面的发现将为已经处于世界领先地位的中国黄土研究拓展一个新研究方向,同时将对古人类生存环境及石器文化技术的演进给出年代标尺和环境标记。
澳大利亚国立大学 Andrew P. Roberts 教授评论认为,这项轰动性工作确立了非洲以外已知的最古老的与古人类相关的遗址的年龄及气候环境背景,对于理解人类进化有着巨大的影响,不仅是中国科学的重大成果,也是 2018 年全球科学的一大亮点。