APP下载

高等数学在经济学专业中的学法探索

2019-02-28刘洋

科学与财富 2019年3期
关键词:高数专业课导数

摘要:高等数学课对大多数学生而言,缺乏自主学习能力,不够重视。针对这种情况,本文以高等数学教师在讲授过程中通过对高等数学知识点在经济学专业中的进行分析,让学生认识到高等数学在经济学专业中的重要性,进而提升学生学习高等数学的能动性,同时提高高等数学教师的教学效率。

关键字:高等数学;自主学习;经济学专业;教学效率

一、问题的提出

大多数学生对高等数学缺乏自主学习能力,重视读不够。一方面是因为高等数学课堂乏味枯燥,另一方面学生在专业课中没有真正体会到数学的工具作用[1]。针对这种现象,高等数学这门课,教师在教授过程中不能纯粹只讲理论知识,要结合面对经济学专业的学生的专业特点,从其专业的不同角度,将高等数学相关的知识点与之相结合。以此引导学生自主学习高等数学知识,提高学生学习高等数学的积极性、主动性和高效性。

二、高等数学在经济学专业的重要性

高等数学是教育部指定的经济学、会计学等专业的基础必修课之一。而且,高等数学不仅能够提高学生的数学文化素养,还能够为学生学习专业知识提供良好的学习工具。由此可见,高等数学是为学生学习专业课服务的一门重要的基础必修课。经济学、会计学专业的学生大多数以文科生为主,普遍的入学分数比较低、数学基础薄弱、学习能力和理解能力都有待进一步的提升。大多数学生对高等数学抱有恐惧心理,导致学生先入为主对高等数学不感兴趣,自然学习高等数学的能动性就差,总一味地依赖教师课堂上的讲解。所以,增强学生自主学习高等数学的意识迫在眉睫。教师不仅要在教授高等数学内容的时候培养学生的自主学习能力,还要教会他们如何学习高等数学的方法。让学生在潜移默化中掌握如何自主学习高等数学的能力,让学生在教师的指导下多学多练,在实践中体验学习高等数学的成就感,增强学生学习好高等数学的自信心,培养学生严谨的逻辑思维。

马克思说,一门学科成熟与否的标志看其对数学的专业程度。数学的学习,其本质就是培养学生严谨的逻辑思维,掌握高数的基本理论、计算方法和技巧,以及解决实际问题的能力、归纳、整理、分析实验结果、撰写论文等。如学习了一个数学定理,怎样专业到题目中,要根据给定的条件找到题目中满足了哪些条件,或在已知题目中隐藏了哪些满足定理中的条件,从而根据定理得出具体题目中的结论。如无穷级数的敛散性中的一个定理[2]:若正项级数 收敛,则 。也就是说我们直接用此定理是无法判断出级数的敛散性的,但我们可以利用其逆否命题“设正项级数 收敛,若 ,则 发散。”来判断正项级数是否发散。

三、结合经济学专业相关知识,突出高等数学知识

高等数学是一门工具性学科,如高等数学在工商管理学、电气信息工程学及机电工程学等相关专业课中的专业,主要知识点是一元函数和二元函数的极限原理、导数与微分原理和积分原理等[3]。但大多數高等数学教师在教学过程中没有结合经济学专业相关知识,这样既不利于激发学生对高等数学学习的自主能动性,又不利于给学生学习经济学专业相关知识提供必要的数学知识。

随着时代的发展,高等数学知识的不断完善,使其在科技、经济等领域处于不可或缺的一部分。对于经济分析与经济管理而言,许多高等数学知识都具有十分重要的功能与意义,特别是多数经济学概念、理论内容与高等数学知识密不可分。高等数学知识在经济管理中的渗透与专业,使得一系列的数学公式与模型被引用到数学管理之中,如一阶微分方程在经济学中的专业,分析商品市场价格与需求量(供给量)之间的关系,预测可再生资源的产量等。这些都巨大的推进经济学理论从单纯的定性分析发展为现代的严谨化、量化与精密化相互结合的分析模式,促使现代经济学发展成为定性分析和定量分析统一协调的学科[4]。

在经济问题中数量关系也无处不在,如成本、价格、产量、利润、收益等。其中边际函数概念的专业最为广泛,而边际函数在高等数学上就是导数在经济领域的专业的别名,将其引用到经济学中,就是为了更好地解决相关的经济问题。如导数在经济函数求解中的专业。增加企业的利润,降低企业的运营成本是经济的中心问题,如何把握最合理的价格、最高的销售量是实现最大利润、最小成本的基础与前提。如某工厂在一个月生产某产品Q件时,总成本为C(Q)=5Q+150(万元),得到的收益为R(Q)=10Q-0.001Q2(万元),问一个月生产多少产品时,所获利润最大?

解:根据题设知利润为:

然而,要达到“一个月生产多少产品时,所获利润最大”这一目的,就必须用到最常见的经济优化知识,即高等数学中的函数的最值求解。而在高等数学中的函数的最值求解中,要用到导数的知识,如对于函数f(x),在其定义域内总有函数f(x0)≥f(x),则x0就是函数处于最大值时的点。若函数f(x)可以求导,则当 同时成立,则x0就是函数的最大值点。那么我们要达到“一个月生产多少产品时,所获利润最大”这一目的,最大利润一定在(0,+∞)内取得,令 得 Q=250,又 。所以L(250)=475(万元)为L的一个极大值。从而一个月生产250件产品时,取得最大利润475万元。由此可见,若学生在学会了高等数学中的导数以及导数在经济领域的专业之后,再去学习经济学专业中的求最大利润问题,就会达到事半功倍的效果。

高等数学课教师要根据高等数学课的特点,并通过对专业课教师的走访,了解到不同专业的学生需要掌握常微分方程、坐标变换、拉普拉斯变换、线性代数、概率论与数理统计等高数知识,据此确定了“专业专业模块”教学的具体内容,并与专业课教师进行交流讨论,将一些常用案例引入高数课堂中[5]。同样地,高等数学教师可与经济学、会计学等专业教师进行交流讨论,将导数、一阶微分方程等知识与经济学专业知识相结合引入高数课堂,这样,学生在学习经济学专业相关知识时,对高等数学知识的需求,就会在潜移默化中促使学生学好高等数学这门课。

四、结论

教师在教授高等数学过程中,结合学生的经济学专业相关知识,举例说明,讲练结合。引导学生积极参与学习高等数学知识的过程,从而提升教师的教学效果,提高学生的学习效率。学生在学会如何学好高等数学的基础上,利用高等数学知识学好经济学专业相关知识

参考文献

[1]石勇.高职高数课紧贴专业需要的必要性与教学探索[D].山东师范大学,2011.

[2]同济大学数学系.高等数学(第七版)[M].北京:高等教育出版社,2014.7.

[3]王颖,高珊.高等数学教学与专业课教学的衔接[J].教育现代化,2016,3(10):180-182

[4]宋艳丽.高等数学知识在经济中的运用探赜[J].湖北函授大学学报,2016,29(06):21-22

[5]陈娜,梁素梅.高职院校高等数学立体化课程建设研究[J].开封教育学院学报,2018,38(06):138-139.

作者简介:刘洋(1989--),女,河南驻马店市人,助教;研究方向:图论及其应用.

猜你喜欢

高数专业课导数
解导数题的几种构造妙招
“导入课”在高校专业课实施“课程思政”的实践与思考
新媒体视角下高等数学教学方法创新性分析
如何在高数教学中培养学生的创造性思维
好书
关于导数解法
服务学习在高职社会工作专业课内实践教学中的探索
导数在圆锥曲线中的应用
函数与导数
研究生专业课学分制教学改革探讨