基于探地雷达早期信号振幅包络值的黏性土壤含水率探测
2019-02-21吴志远杜文凤聂俊丽
吴志远,杜文凤,聂俊丽,崔 凡
基于探地雷达早期信号振幅包络值的黏性土壤含水率探测
吴志远1,杜文凤1,聂俊丽2※,崔 凡1
(1. 中国矿业大学(北京)煤炭资源与安全开采国家重点实验室,100083 北京;2. 贵州大学国土资源部喀斯特环境与地质灾害重点实验室,贵阳 550025)
为了验证探地雷达探测黏性土壤含水率的精确性,利用探地雷达早期信号振幅包络法平均值方法(average amplitude envelope, AEA)对降雨前后野外农田表层(<0.3 m)土壤含水率进行探测,并利用TDR探测土壤含水率以作对比。研究结果显示,土壤水分含量与黏粒含量具有一定相关性。在大面积范围内(1 000 m长测线),TDR 2次探测土壤平均含水率分别为14.16 、16.91 cm3/cm3;AEA方法2次探测土壤平均含水率分别为14.62、17.88 cm3/cm3,与TDR实测含水率差值分别为0.46、0.97 cm3/cm3,2种方法探测所得含水率具有极显著的相关性(<0.01),相关系数分别为0.825、0.814。小范围内(40 m×40 m)降雨前后TDR 2次探测黏性土壤含水率分别为14.11 、16.77 cm3/cm3。AEA 2次探测土壤平均含水率分别为14.86 cm、17.46 cm3/cm3,比TDR实测含水率分别大0.74 、0.69 cm3/cm3。AEA与TDR探测所得含水率相关系数分别为0.701、0.827(<0.01),研究结果表明利用探地雷达AEA方法能够获得与TDR实测精度相近的黏性土壤含水率。利用常规探地雷达共中心点法及共偏移距方法对研究区黏性土壤含水率探测结果显示,这2种方法均不能有效地探测黏性土壤含水率。
土壤;含水率;探地雷达;AEA方法;TDR
0 引 言
黏性土壤是土地资源评价、农田土地整理中较为常见的土壤介质。黏性土壤的介电性质、理化性质及力学性质等与土壤中水分含量具有密切的关系[1-3]。探地雷达作为一种快速无损的探测工具,能够提供有关电磁波在地下传播的信息,进而实现对地下介质的探测。特别是在土壤水分探测中,探地雷达以其快速、无损、探测范围适中等优点得到了广泛的应用[4-9]。但由于黏性土壤成分复杂、电磁波在黏土介质传播中衰减速度快等缺点,探地雷达在黏性土壤含水率探测中应用较少,这大大限制了探地雷达技术的应用和发展[10-12]。
雷达波早期信号是由收发天线距离较小致使空气波和地面波叠加而产生的信号,与空气波和地面波相同,它同样能够反应周围介质的物理性质[13-17]。研究显示,雷达波早期信号的振幅值、波形等属性与土壤中水分含量具有一定的相关性[18],这为利用雷达波早期信号探测黏土层含水率提供的理论基础。同时对于黏性土壤,由于土壤电导率较高导致大部分雷达波能量在地表附近已被损耗,因此相较于反射波,地面波是更加有用的波形信号。雷达波早期信号振幅包络值(average envelope amplitude,AEA)的概念是由Pettinelli等[19]提出,并利用于土壤水分探测中。其将雷达波前6 ns的瞬时幅度信号与从TDR测量中提取的介电参数(ԑ和σ)以及实测土壤含水率含水率进行比较分析,结果显示GPR信号的空间变化与TDR参数之间具有良好的一致性。另外,Pettinelli等[20]还分析了雷达信号前12 ns窗口内探地雷达信号的包络幅值与土壤介电参数关系,认为土壤介电参数对早期信号有较强的影响,利用探地雷达早期信号方法估算含水率含水率的空间分布具有一定的可行性。在进一步的研究基础上,Pettinelli等[21]对探地雷达早期信号属性与砂层介电性质的相关性进行了分析,结果表明,利用早期雷达波信号属性结合适当的校准工具(如TDR),利用较小固定偏移距GPR配置即可方便、快速的得到可靠、详细的浅层土电磁属性分布。Matteo等[22]对利用雷达波早期信号振幅属性估计含水率变化条件下的土壤介电常数进行了数值模拟分析。结果显示在典型收发距及土壤电磁参数条件下,空气波和地面波难以区分。介电常数变化对雷达波初次波的影响较大。介质电导率对雷达信号波峰产生影响但对雷达波早期信号振幅基本没有影响。Ferrara等[23]研究显示雷达波早期信号对土壤的介电性质变化相当敏感。此外,探地雷达早期信号振幅包络值与TDR探测土壤介电参数之间具有较高的相关性,而早期信号对电导率的变化相当敏感。Comite等[24-26]利用数值模拟和实验室试验对雷达波早期信号与介质介电常数关系进行了大量的分析研究,研究结果表明,雷达波早期信号对GPR探测系统(天线类型和位置、输入波形等环境参数)较为敏感。随着介电常数值的增加,利用雷达波探测介质介电参数的灵敏度大大降低,雷达波信号很容易被强波形畸变和干扰信号(如噪声、杂波、不均匀性等)所淹没。因此较小的收发距天线配置更适合雷达波早期信号的应用。Algeo等[18]利用多种探地雷达方法对富黏土的农田灌溉区地表土壤水分进行了探测,结果显示只有早期雷达波信号方法能够得到15 cm范围内土壤水分的空间精确变化情况,而共中心点法和共偏移距方法均不可行,由此可见利用探地雷达早期信号探测黏土层含水率具有一定的可行性。在国内崔凡等[27]利用雷达波早期信号振幅评价沙壤土含水率,结果显示利用雷达波早期信号振幅包络平均值能够精确的评价沙壤土含水率。前人对利用探地雷达早期信号振幅包络值(AEA)评价土壤含水率进行了一定的研究,但利用该方法评价黏性土壤含水率的研究还处于起步阶段。基于此,本次研究通过对比AEA方法所得含水率与TDR探测含水率,验证该方法在黏性土壤含水率探测中的精确性,同时对比分析了常规探地雷达方法在黏性土壤含水率探测中的适用性。本研究为利用探地雷达探测黏性土壤含水率提供了新的方向,研究成果在农业土地治理、环境工程勘探等领域均有较大的应用潜力。
1 研究方法
1.1 雷达波早期信号振幅包络值提取
雷达波早期信号一般是指第1个周期内的雷达波,在提取子波信号的基础上,利用希尔伯特变换即可获得雷达波早期信号振幅包络值[28-29]。图1为雷达波信号1/4周期、1/2周期信号振幅及振幅包络值。
a. 1/4周期振幅b. 1/4周期振幅包络值c. 1/2周期振幅d. 1/2 周期振幅包络值 a. 1/4 period amplitudeb. 1/4 period amplitude envelope valuec. 1/2 period amplituded. 1/2 period amplitude envelope value
1.2 雷达波振幅包络值与土壤电磁参数关系
研究显示雷达波振幅包络值与土壤电磁性质关系密切,Matteo对雷达波振幅包络与土壤电磁参数的关系进行了推导,并得出以下公式[22]
1.3 土壤样品黏粒含量测定
土壤样品黏粒测定的原理是经分散处理的土粒在悬浮中自由沉降,粒径不同沉降速度不同,粒径越大沉降越快。根据Stakes定律(即悬液中沉降的土粒。沉降速度与其粒径平方成正比,而与悬液的黏滞系数成反比),算出不同直径的土粒在水中沉降一定距离所需时间,并用比重计测出土壤悬液中所含土粒的数量。本次研究土壤黏粒测定方法依据公式(3)完成。
1.4 实际探测场地及探地雷达参数选取
本次研究选取场地为未耕作农田,土壤性质主要为黏土及含沙黏土,雷达探测范围内土壤性质变化较小,地面较为平整。探地雷达探测区域分别为1条1 000 m长测线及40 m×40 m正方形区域,正方形区域与长测线的垂直距离为50 m,如图2所示。1 000 m长测线内每隔25 m布置1个测点。正方形区域内在纵向和横向上平均每隔10 m布置1条雷达测线,布置雷达测线L1-L10共10条,TDR探测共布置25个测点。雷达测线及TDR测点布置如图2所示。雷达及TDR探测总共分2次进行,时间分别为2018年10月20日及2018年11月2日。第1次探测天气较好,探测前10天内未有降雨;第2次探测前3天有降雨发生。为了减少地表非均质性的干扰,在探测前对地表杂质进行了清理。本研究探地雷达探测参数选取天线中心频率为200 MHz,采样点数为1 024,分辨率为0.2 m。
图2 雷达测线及TDR取样示意
2 研究结果
2.1 雷达波振幅包络值与电磁参数关系
本次研究对100个雷达波信号振幅进行了希尔伯特变换,并利用相关性分析对不同时窗内的雷达波早期信号振幅值倒数与介电常数及电导率的关系进行计算,计算结果如表1所示。介电常数、电导率数据由TDR实测获得。从表中可以看出当时窗为4~9 ns时雷达波振幅与介电常数、电导率的相关性最好,相关系数达到0.85。利用AEA方法的最大探测深度约为36 cm,大于40 cm是该方法探测精度明显降低。
2.2 1 000 m长测线土壤含水率探测结果
在研究区内选取1 000 m长测线进行TDR、多种探地雷达探测土壤含水率,同时在实验室对土壤黏粒含量进行分析。结果显示,TDR 2次探测土壤平均含水率分别为14.16、16.91 cm3/cm3;AEA方法2次探测土壤平均含水率分别为14.62、17.88 cm3/cm3,与TDR2次探测含水率差值分别为0.46、0.97 cm3/cm3;共中心点、共偏移距2种方法第11次探测土壤平均含水率分别为26.15、25.88 cm3/cm3,与TDR第1次探测土壤含水率差值分别为11.99、11.72 cm3/cm3。从表1中可以看出,AEA 2次探测含水率与TDR 2次探测土壤含水率呈极显著相关性(相关系数为分别为0.835、0.814),表明AEA方法能够获得与TDR实测精度相近的土壤含水率。另外从表中可以看出黏粒含量与TDR、AEA探测所得含水率具有明显的相关性。
表1 雷达信号振幅包络值倒数与介电常数、电导率相关系数
注:H-εr,σ为雷达早期信号平均振幅包络值倒数与介电常数、电导率关系,由公式(3)计算所得。*为显著正相关,**为极显著正相关。
Note:-1-ε,is the ratio of early radar signal amplitude envelope reciprocalwith dielectric constant and conductivity, calculated by formula (3). * expresses significant positive correlation, ** expresses very significantly correlated.
表2 1 000 m长测线内TDR、多种探地雷达方法探测所得含水率相关性
注:**为在0.01水平(双侧)上显著相关;*为在0.05水平(双侧)上显著相关。下同。
Note: ** expressesvery significantly correlated (<0.01), * expresses significant positive correlation (<0.05). Same as below.
2.3 正方形区域AEA方法与实测含水率探测结果对比
2.3.1 正方形区域内土壤黏粒含量
大范围内土壤含水率等额变化是由小范围内的土壤含水率变化引起的,因此本次研究在1 000 m长测线东南50 m处布置了1个40 m×40 m的正方形区域进行含水率探测。本次研究首先对雷达探测范围内的地表黏土含量进行了取样分析,共采集黏土样品25个,实测样品黏粒含量值分布在33%~75.8%,平均为49.4%。黏粒含量平面分布特征如图3所示,从图中可以看出探测区域内黏粒含量呈现南高北低的特点,其中黏粒含量最大值分布在探测区内西南角和东南角。土壤样品中除了黏粒外,其余土壤介质主要为中砂,含少量砾石。
图3 探测区域内黏粒含量分布
2.3.2 正方形区域内 TDR探测含水率结果
利用TDR 2次探测地表(0~30 cm)黏性土壤含水率平均分别为14.11、16.77 cm3/cm3,降雨后研究区地表土壤含水率比降雨前增大2.56 cm3/cm3。2次探测地表(<0.3 m)土壤含水率平面分布如图4所示,2次探测南部区域含水率均大于北部地区含水率,其中西南部区域2次探测含水率均较大,东南角和西北部地区2次探测含水率均较小。统计分析显示2次探测土壤含水率呈极显著性相关(<0.01),相关系数为0.808。对比2次探测土壤含水率与土壤黏粒分布情况,如表3所示,可以看出含水率的分布与土壤黏粒含量具有明显的相关性,第1次探测土壤含水率与土壤黏粒含量呈极显著性相关(<0.01),相关系数为0.592。第2次探测土壤含水率与土壤黏粒含量呈显著性相关(<0.05),相关系数为0.486。
2.3.3 正方形区域AEA方法探测含水率结果
利用4~9 ns范围内的雷达波早期信号振幅包络值对研究区地表土壤含水率进行计算统计分析。统计分析结果显示,第1、2次探测土壤含水率平均为14.86、17.46 cm3/cm3,利用AEA方法2次探测所得含水率比TDR2次探测所得含水率分别大0.74、0.69 cm3/cm3。2 次探测土壤含水率平面分布如图5所示,从图中可以看出,AEA方法探测所得含水率与TDR探测所得含水率具有一定的相似性,即研究区南部地区含水率大,北部地区含水率小。统计分析显示,如表4所示,AEA第1次探测含水率值与TDR第1次探测含水率呈极显著性相关(在0.01水平),相关系数为0.701;AEA第2次探测含水率值与TDR第2次探测含水率值呈极显著性相关(在0.01水平),相关系数为0.827。AEA第1探测土壤含水率值与黏性土壤含量呈极显著性相关(在0.01水平),相关系数为0.546;AEA第2次探测土壤含水率值与黏性土壤含量呈显著性相关(在0.05水平上),相关系数为0.432。由此可见,利用探地雷达AEA方法能够获取与TDR实测精度相近的黏性土壤含水率。
表3 正方形区域TDR 2次探测含水率与土壤黏粒关系
表4 AEA探测土壤含水率与TDR探测土壤含水率及土壤黏粒含量关系
2.3.4 其他探测雷达方法探测黏性土壤含水率分析
本研究在第1次探测中分别利用探地雷达共中心点法和共偏移距反射波方法等常规探地雷达方法对研究区黏性土壤地表含水率进行了探测,以验证常规探地雷达方法探测黏性土壤含水率的精确性。共中心点法和共偏移距方法探测所得土壤含水率分别在4.69~43.6、3.69~45.6 cm3/cm3之间,平均分别为22.05、20.64 cm3/cm3,2种方法获得土壤含水率与实测含水率相差较大。2种方法探测所得含水率平面分布如图6所示,从图中可以看出与TDR及AEA方法获取土壤含水率相比,共中心点法和共偏移距方法获得土壤含水率规律不同。统计分析结果显示,如表5所示,常规探地雷达方法探测所得含水率与TDR及AEA方法所得含水率没有相关性,表明利用常规探地雷达方法难以获取精确的黏性土壤含水率。
表5 共中心点法、共偏移距反射波法探测所得含水率与AEA、TDR探测含水率及黏粒含量关系
3 结 论
本次研究对比分析了不同探测范围内探地雷达AEA方法探测土壤含水率与TDR方法探测土壤含水率,并得出以下结论:
1)无论在大面积范围内(1 000 m长测线),或者小面积范围内(40 m×40 m),利用探地雷达AEA方法均能够获得与TDR探测精度相近的黏性土壤含水率,2种方法探测所得地表(<0.3 m)土壤含水率差值<1 cm3/cm3,相关系数>0.7(<0.01),表明利用探地雷达AEA方法可以精确探测黏性土壤含水率。该方法为利用探地雷达探测黏性土壤含水率提供了一个新的方向。
2)利用共中心点及共偏移距探地雷达方法对黏性土壤含水率进行探测结果显示,这2种常规探地雷达探测方法难以精确探测黏土土壤含水率,其探测结果与TDR探测含水率结果相差甚远,表明常规探地雷达方法难以应用到黏性土壤含水率的探测中。
[1]陈权,曾江源,李震,等. 遥感监测介电常数与土壤含水率关系模型[J]. 农业工程学报,2012,28(12):171-175. Chen Quan, Zeng Jiangyuan, Li Zhen, et al. Relationship model of soil moisture and dielectric constant monitored with remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(12): 171-175. (in Chinese with English abstract)
[2]付同刚,陈洪松,张伟,等. 喀斯特小流域土壤含水率空间异质性及其影响因素[J]. 农业工程学报,2014(14):124-131. Fu Tonggang, Chen Hongsong, Zhang Wei, et al. Spatial variability of soil moisture content and its influencing factors in small Karst catchment during dry period[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(14): 124-131. (in Chinese with English abstract)
[3]沈杰,余群. 黏性土壤剪切强度与容重和含水率含水率之间关系的研究[J]. 土壤学报,1991(2):132-138. Shen Jie, Yu Qun. Study on the relationship between shear strength, bulk density and water content of cohesive soil[J]. Acta Pedologica Sinica, 1991(2): 132-138. (in Chinese with English abstract)
[4]吴志远,尹尚先,马丽红. 基于探地雷达的煤矿开采区地表土壤含水率变化研究[J]. 华北科技学院学报,2017,14(6):17-23. Wu Zhiyuan, Yin Shangxian, Ma Lihong. Research on the change of surface soil water content in mining area based on ground penetrating radar[J]. Journal of North China Institute of Science and Technology, 2017, 14(6): 17-23. (in Chinese with English abstract)
[5]Liu Xinbo, Chen Jin, Cui Xihong, et al. Measurement of soil water content using ground-penetrating radar: A review of current methods[J]. International Journal of Digital Earth, 2017(3): 1-24.
[6]Cetrangolo G P, Domenech L D, Moltini G, et al. Determination of moisture content in ceramic brick walls using ground penetration radar[J]. Journal of Nondestructive Evaluation, 2017, 36(1): 12.
[7]Jafarov, Parsekian, Schaefer, et al. Estimating active layer thickness and volumetric water content from ground penetrating radar measurements in Barrow, Alaska[J]. Geoscience Data Journal, 2017, 4(2): 72-79.
[8]吴志远,彭苏萍,杜文凤,等. 基于探地雷达波振幅包络平均值确定土壤含水率[J]. 农业工程学报,2015,31(12):158-164. Wu Zhiyuan, Peng Suping, Du Wenfeng, et al. Detection of soil water content using ground penetrating radar average envelope amplitude method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 158-164. (in Chinese with English abstract)
[9]崔凡,吴志远,武彦斌. 探地雷达在西部煤矿砂壤地层含水率时空变化中的应用[J]. 煤炭学报,2015,40(10):2437-2444. Cui Fan, Wu Zhiyuan, Wu Yanbin. Application of GPr in the spatio-temporal variation of moisture content of sandy loam layer in Western China[J]. Journal of China Coal Society, 2015, 40(10): 2437-2444. (in Chinese with English abstract)
[10]吴信民,曹俊昌,杨亚新,等. 黏土中电磁波速度与含水率含水率关系研究及应用[J]. 水文地质工程地质,2007,34(5):120-122. Wu Xinmin, Cao Junchang, Yang Yaxin, et al. Research of the relation between velocity of electromagnetic wave and water content in clay and its application[J]. Hydrogeology and Engineering Geology, 2007, 34(5): 120-122. (in Chinese with English abstract)
[11]吴信民,杨亚新,高建宏. 探地雷达电磁波在黏土中速度的研究[C]//中国地球物理学会年会. 2004. Wu Xinmin, Yang Yaxin, Gao Jianhong. Velocity of ground penetrating radar electromagnetic waves in clay[C]// Annual Meeting of the Chinese Geophysical Society, 2004.
[12]马福建,雷少刚,杨赛,等. 土壤含水率与探地雷达信号属性的关系研究[J]. 土壤通报,2014,45(4):809-815. Ma Fujian, Lei Shaogang, Yang Sai, et al. Relationship between soil moisture content and GPR signal properties[J]. Chinese Journal of Soil Science, 2014, 45(4): 809-815. (in Chinese with English abstract)
[13]Hans G, Redman D, Leblon B, et al. Determination of log moisture content using early-time ground penetrating radar signal[J]. Wood Material Science & Engineering, 2015, 10(1): 112-129.
[14]Ferrara C, Barone P M, Mattei E, et al. An evaluation of the early-time GPR amplitude technique for electrical conductivity monitoring[C]// 7th International Workshop on Advanced Ground Penetrating Radar, 2013.
[15]Jang S, Choi W, Sarkar T K, et al. Exploiting early time response using the fractional Fourier transform for analyzing transient radar returns[J]. IEEE Transactions on Antennas & Propagation, 2004, 52(11): 3109-3121.
[16]Ferrara C, Tullio V D, Barone P M, et al. Integrated GPR and unilateral NMR approach to estimate water content in a porous material[C]// International Workshop on Advanced Ground Penetrating Radar, 2011.
[17]Ferrara C, Barone P M, Mattei E, et al. An evaluation of the early-time GPR amplitude technique for electrical conductivity monitoring[C]// International Workshop on Advanced Ground Penetrating Radar, 2013.
[18]Algeo J, Dam R L V, Slater L. Early-Time GPR: A method to monitor spatial variations in soil water content during irrigation in Clay Soils[J]. Vadose Zone Journal, 2016, 15(11) Doi: 10.2136/v2j2016.03.0026.
[19]Pettinelli E, Matteo A D, Paolucci F, et al. Early-time GPR signal analysis: implications for water content measurement[C]// International Workshop on Advanced Ground Penetrating Radar, 2005:51-54.
[20]Pettinelli Elena, Giuliano Vannaroni, Barbara Di Pasquo, et al. Correlation between near-surface electromagnetic soil parameters and early-time GPR signals: An experimental study[J]. Geophysics, 2007, 72(2): A25-A28.
[21]Pettinelli E, Matteo A D, Beaubien S E, et al. A controlled experiment to investigate the correlation between early-time signal attributes of ground-coupled radar and soil dielectric properties[J]. Journal of Applied Geophysics, 2014, 101(1): 68-76.
[22]Matteo A D, Pettinelli E, Slob E. Early-Time GPR Signal Attributes to Estimate Soil Dielectric Permittivity: A Theoretical Study[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 51(3): 1643-1654.
[23]Ferrara C, Barone P M, Steelman C M, et al. Monitoring Shallow Soil Water Content Under Natural Field Conditions Using the Early-Time GPR Signal Technique[J]. Vadose Zone Journal, 2013, 12(4): 1742-1751.
[24]Comite D, Galli A, Ferrara C, et al. Numerical and experimental surveys on the GPR early-time signal features for the evaluation of shallow-soil permittivity[C]// International Conference on Ground Penetrating Radar. IEEE, 2014.
[25]Comite D, Galli A, Ferrara C, et al. Relations between GPR early-time signal attributes and ground permittivity: A numerical investigation[C]// European Conference on Antennas & Propagation, 2014.
[26]Comite D, Galli A, Lauro S E, et al. Analysis of GPR Early-time signal features for the evaluation of soil permittivity through numerical and experimental surveys[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(1): 178-187.
[27]崔凡,陈柏平,吴志远等. 基于探地雷达功率谱和雷达波振幅包络估算砂壤含水率[J]. 农业工程学报,2018,34(7):121-127. Cui Fan, Chen Baiping, Wu Zhiyuan, et al. Soil moisture estimation based on GPR power spectrum and envelope amplitude in sand loam[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 121-127. (in Chinese with English abstract)
[28]Jang S, Choi W, Sarkar T K, et al. Exploiting Early Time Response Using the Fractional Fourier Transform for Analyzing Transient Radar Returns[J]. IEEE Transactions on Antennas & Propagation, 2004, 52(11): 3109-3121.
[29]Ren Mingqiu, Cai Jinyan, Zhu Yuanqing. Classification of radar signals using time-frequency transforms and fuzzy clustering[C]// International Conference on Microwave & Millimeter Wave Technology. 2010.
Detection of cohesive soil water content based on early signal amplitude envelope of ground penetrating radar
Wu Zhiyuan1, Du Wenfeng1, Nie Junli2※, Cui Fan1
(1.,,100083,; 2.,,,550025,)
Cohesive soil is a common soil medium in land resource evaluation and farmland land consolidation. The dielectric properties, physical, chemical properties and mechanical properties of cohesive soils are closely related to the soil water content. Ground penetrating radar (GPR), as a fast and non-destructive detection tool, can provide information about electromagnetic wave propagation in the ground, so as to realize the detection of underground media. Especially in soil water content detection, ground penetrating radar (GPR) has been widely used. However, due to the complex composition of cohesive soil and the fast attenuation of electromagnetic waves in cohesive, GPR is rarely used in the detection of water content in cohesive soil, which greatly restricts the application and development of GPR technology. The early signal of radar wave is the signal generated by the superposition of air wave and ground wave due to the small distance between the transmitting and receiving antenna, and it can also reflect the physical properties of the surrounding medium. The results show that there is a certain correlation between the early signal amplitude, waveform and soil water content. For cohesive soils, most of the radar wave energy has been lost near the surface due to the high conductivity, so ground waves are more useful waveform signals than reflected waves. In order to verify the accuracy of GPR, AEA (average amplitude envelope) method in detecting the water content of cohesive soil, this study used GPR to detect the soil water content of field farmland (<0.3 m) before and after rainfall, and TDR was used for comparison. The results showed that there was a certain correlation between soil water content and clay content. In a large area (1 000 m long survey line), the average soil water content detected by TDR was 14.16, 16.91 cm3/cm3, respectively. The average soil water content detected by AEA method was 14.62, 17.88 cm3/cm3, respectively, and the difference between them and the measured water content by TDR was 0.46, 0.97 cm3/cm3, respectively. The water content detected by the two methods had extremely significant correlation (<0.01), and the correlation coefficients were 0.825 and 0.814, respectively (<0.01). Within a small range (40 m×40 m), the water content of cohesive soil detected by TDR before and after rainfall was 14.11, 16.77 cm3/cm3, respectively. The average soil water content detected by AEA method was 14.86, 17.46 cm3/cm3, respectively, which were 0.74, 0.69 cm3/cm3higher than that measured by TDR. The correlation coefficients of water content detected by the two methods were 0.701 and 0.827, respectively (<0.01). Analysis of the water cut plane distribution of the two detection methods showed that the soil water content detected by AEA method was similar to TDR method. The results showed that ground penetrating radar (GPR) AEA model could accurately detect the water content of cohesive soil. The conventional GPR common mid point method and fixed offset method were used to detect the water content of cohesive soil in the study area. The results showed that neither of the two methods could effectively detect the moisture content of cohesive soil.
soils; water content; radar; AEA method; TDR
吴志远,杜文凤,聂俊丽,崔 凡. 基于探地雷达早期信号振幅包络值的黏性土壤含水率探测[J]. 农业工程学报,2019,35(22):115-121. doi:10.11975/j.issn.1002-6819.2019.22.013 http://www.tcsae.org
Wu Zhiyuan, Du Wenfeng, Nie Junli, Cui Fan. Detection of cohesive soil water content based on early signal amplitude envelope of ground penetrating radar[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 115-121. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.22.013 http://www.tcsae.org
2019-02-28
2019-09-26
煤炭资源与安全开采国家重点实验室资助项目(SKLCRSM17KFA06)
吴志远,博士,主要从事探地雷达及土壤修复等工作。Email:15201359815@163.com
聂俊丽,博士,主要从事地球物理探测技术和环境问题的研究。Email:38240493@qq.com
10.11975/j.issn.1002-6819.2019.22.013
S152.7
A
1002-6819(2019)-22-0115-07