APP下载

“实数大小比较”有妙招

2018-12-25蒋根林

初中生世界·八年级 2018年12期
关键词:立方根平方根算术

蒋根林

数系扩充到实数后,数的概念范围扩大了,我们已步入实数的殿堂.在有理数范围内可以进行数的大小比较,那么学习无理数以后,在实数范围内如何进行数的大小比较呢?下面结合具体例题给同学们总结归纳.

妙招1:数形结合法

【例1】比较大小:[-2],-2.

【解析】我们知道边长为1的正方形对角线长为[2],于是先在数轴上画出表示[-2]的点,如图:

由于表示-2的点在表示[-2]的点的左边,所以-2<[-2].

【回顾】事实上,我们还可结合勾股定理,利用數轴来比较[-5]、[-7]等的大小.

妙招2:“回到概念”法

由于数学概念本身有“双向性”:“正向”与“反向”,所以,在用概念时就有“正用”和“反用”两种方法.

【例2】比较[-3]与[-2]的大小.

【解析】比较两个负数的大小,可先比较它们的绝对值,绝对值大的反而小.由于[-3]=[3],[-2]=[2],3的算术平方根为[3],2的算术平方根为[2],因为3>2,所以[3]>[2],故[-3]<[-2].

【回顾】我们借助平方根、立方根的意义,对它们的概念作出分析,从中悟出道理:一个较大的非负数的算术平方根较大;一个较大数的立方根较大.然后加以应用,问题获得解决.

【例3】比较大小:

(1)[140]与12;(2)[93]与2.5.

【解析】(1)因为[140]是140的算术平方根,可反用平方根概念,所以([140])2=140.

又因为122=144>140,所以[140]<12.

(2)因为[93]是9的立方根,所以反用立方根概念,([93])3=9,

又因为(2.5)3=15.625>9,所以[93]<2.5.

【回顾】这里主要是对平方根、立方根的概念逆向思考.一个非负数a的平方根为:[±a],反过来,([±a])2=a(a≥0);一个数a的立方根为[a3],反过来,([a3])3=a.上面的求解就是反用概念的“平方法”或“立方法”.

妙招3:估值法

【例4】比较大小:[19]+2______[51].

【解析】由于4<[19]<5,所以6<[19]+2<7,又由于[51]>7,所以[19]+2<[51].

【回顾】对于能直接估计出大小的两个平方根的大小比较时,我们应该首先考虑用估值法比较两个平方根的大小,因为这种大小比较的方法最直接.对于有些无理数,我们可以综合平方根或立方根的知识,来一个两头“夹逼”,找出与这些无理数紧相邻的两个完全平方数,确定这个无理数所在的范围,然后再与其他数比较大小.

妙招4:特值法

【例5】若0

【解析】因为0

【回顾】特值法对于处理“直接填写答案”的题型(包括填空、选择题型)很有效果.对于解答题或数学研究来说,特值法是“以退为进”策略的具体化体现,通过赋值分析,往往能发现规律、提示解答方向,是一种很有意义的求解策略.

(作者单位:江苏省南京市科利华中学)

猜你喜欢

立方根平方根算术
“立方根”初试锋芒
『立方根』检测题
“平方根”学习法升级版
平方根易错点警示
“立方根”检测题
帮你学习平方根
如何学好平方根
学算术
巧得立方根
小狗算算术