APP下载

转运RNA知多少

2018-12-24刘晓野

赢未来 2018年16期
关键词:氨基酸

刘晓野

摘要:转运RNA是具有携带并转运氨基酸功能的一类小分子核糖核酸,英文缩写为tRNA其结构是一条长70~90个核苷酸并折叠成三叶草形的短链组成的,主要功能是携带氨基酸进入核糖体,在mRNA指导下合成蛋白质。

关键词:转运RNA;氨基酸;反密码子

转运RNA(transfer ribonucleic acidtRNA)是具有携带并转运氨基酸功能的一类小分子核糖核酸,简称tRNA。绝大多数tRNA由七十几至九十几个核苷酸组成,分子量为25000~30000,沉降常数约为4S(个别tRNA的沉降常数为3S,含63个核苷酸)。曾用名有联接RNA、可溶性RNA、pH5RNA等。

1、种类分类

一种tRNA只能携带一种氨基酸,如丙氨酸tRNA只携带丙氨酸,但一种氨基酸可被不止一种tRNA携带。同一生物中,携带同一种氨基酸的不同tRNA称作“同功受体tRNA”。组成蛋白质的氨基酸有20种,而tRNA可以有六七十种或更多。携带同一种氨基酸的细胞器tRNA与细胞质tRNA也不一样,生物体发生突变后,校正机制之一是通过校正基因合成一类校正tRNA,以维持翻译作用译码的相对正确性。可以有多种校正tRNA携带同一种氨基酸。所以中学生物教学中好多一线教师给学生讲的是有61种tRNA,这种说法其实是不妥的。

2、结构构成

转运RNA分子由一条长70~90个核苷酸并折叠成三叶草形的短链组成的。上tRNA链的两个末端在图上方指出的L形结构的末端互相接近,氨基酸在箭头示意的位置被连接。在这条链的中央形成了L形臂,如图下方所示,露出了形成反密码子的三个核苷酸。三叶草结构的其余两环被包裹成肘状,在那里它们提供整个分子的结构。四个常见RNA碱基---腺嘌呤,尿嘧啶,鸟嘌呤和胞嘧啶显然不能提供足够的空间以形成一个坚固的结构,因为这些碱基大部分被修饰过以延长它们的结构。 自从1965年R.W.霍利等首次测出酵母丙氨酸tRNA的一级结构即核苷酸排列顺序以来,到1983年已有200多个tRNA(包括不同生物来源、不同器官、细胞器的同功受体tRNA以及校正tRNA)的一级结构被阐明。按照A-U、G-C以及G-U碱基配对原则,除个别例外,tRNA分子均可排布成三叶草模型的二级结构(图1)。它由3个环,即D环〔因该处二氢尿苷酸(D)含量高〕、反密码环(该环中部为反密码子)和TΨC环〔因绝大多数tRNA在该处含胸苷酸(T)、假尿苷酸(Ψ)、胞苷酸(C)顺序〕,四个茎,即D茎(与D环联接的茎)、反密码茎(与反密码环联接)、TΨC茎(与 TΨC环联接)和氨基酸接受茎〔也叫CCA茎,因所有tRNA的分子末端均含胞苷酸(C)、胞苷酸(C)、腺苷酸(A)顺序, CCA是连接氨基酸所不可缺少的〕,以及位于反密码茎与TΨC茎之间的可变臂构成。不同tRNA的可变臂长短不一,核苷酸数从二至十几不等。除可变臂和D环外,其他各个部位的核苷酸数目和碱基对基本上是恒定的。图1也示出tRNA分子中出现的保守或半保守成分,这些成分对维系tRNA的三级结构是很重要的。tRNA的结构特征之一是含有較多的修饰成分,如上面提到的 D、T、 Ψ等;核酸中大部分修饰成分是在tRNA中发现的。修饰成分在tRNA分子中的分布是有规律的,但其功能不清楚。

3、功能介绍

tRNA主要是携带氨基酸进入核糖体,在mRNA指导下合成蛋白质,即以mRNA为模板,将其中具有密码意义的核苷酸顺序翻译成蛋白质中的氨基酸顺序(见蛋白质tRNA循环的生物合成、核糖体)。tRNA与mRNA是通过反密码子与密码子相互作用而发生关系的。在肽链生成过程中,第一个进入核糖体与mRNA起始密码子结合的tRNA叫起始tRNA,其余tRNA参与肽链延伸,称为延伸tRNA,按照mRNA上密码的排列,携带特定氨基酸的tRNA依次进入核糖体。形成肽链后,tRNA即从核糖体释放出来,整个过程叫做tRNA循环(图3)。tRNA靠反密码子与mRNA识别,但并非一种反密码子只能识别一种密码子。例如反密码子CIG(I是次黄嘌呤核苷酸)能识别三种密码子,一般反密码子中的稀有核苷酸因配对不严格而能识别多种密码子,这种现象在生物学中称为“摆动性” tRNA是通过分子中3′端的CCA携带氨基酸的。氨基酸连接在腺苷酸的2′或3′OH基上,携带了氨基酸的tRNA叫氨酰tRNA,例如,携带甘氨酸的tRNA叫甘氨酰tRNA。氨基酸与tRNA的结合由氨酰tRNA合成酶催化,分二步进行:①氨基酸+ATP→氨酰-AMP+焦磷酸;②氨酰-AMP+tRNA→氨酰-tRNA+AMP。与一种氨基酸对应的至少有一种tRNA和一种氨酰-tRNA合成酶(见蛋白质生物合成)。

tRNA还具有其他一些特异功能,例如,在没有核糖体或其他核酸分子参与下,携带氨基酸转移至专一的受体分子,以合成细胞膜或细胞壁组分;作为反转录酶引物参与DNA合成;作为某些酶的抑制剂等。有的氨酰-tRNA还能调节氨基酸的生物合成。在许多植物病毒RNA分子中发现有类似于tRNA的三叶草结构,有的也能接受氨基酸,其功能不详。

4、合成类别

4.1生物合成:

在生物体内,DNA分子上的tRNA基因经过转录生成tRNA前体,然后被加工成成熟的tRNA: tRNA前体的加工包括:切除前体分子中两端或内部的多余核苷酸;形成tRNA成熟分子所具有的修饰核苷酸;如果前体分子3′端缺乏CCA顺序,则需补加上CCA末端。加工过程都是在酶催化下进行的。

4.2人工合成:

1981年,中国科学家王德宝等用化学和酶促合成相结合的方法首次全合成了酵母丙氨酸tRNA。它由76个核苷酸组成,其中包括天然分子中的全部修饰成分,产物具与天然分子相似的生物活性(见核糖核酸和核酸人工合成)。

总之,tRNA的组成、结构、功能和基本单位并非像中学生物课本中阐述的那样简单,所以作为一线教师,应该在了解以上内容的前提下根据高考要求,给学生进行恰当的的拓展和有分寸的讲解,以免学生误解或留下错误的印象。

猜你喜欢

氨基酸
必需氨基酸
月桂酰丙氨基酸钠的抑菌性能研究
UFLC-QTRAP-MS/MS法同时测定绞股蓝中11种氨基酸
HPLC法同时测定阿胶强骨口服液中4种氨基酸
富硒氨基酸水溶肥料在大樱桃上的应用
杜仲雄花氨基酸多样性及营养价值评价
一株Nsp2蛋白自然缺失123个氨基酸的PRRSV分离和鉴定
脑卒中后中枢性疼痛相关血浆氨基酸筛选
DNFB柱前衍生化RP-HPLC测定大黄种子氨基酸的含量
氨基酸分析仪测定玉米浆中17种游离氨基酸的不确定度评定