电气自动化技术在电力工程中的应用
2018-10-21王磊
王磊
摘 要:电氣自动化技术是当今世界最活跃、最充满生机、最富有开发前景的综合性学科与众多高新技术的合成。其应用范围十分广泛,几乎渗透到国民经济各个部门,随着我国科技技术的发展,电气自动化技术也随之提高。
关键词:电力工程;电气自动化;自动化技术
1 前言
我国电气自动化专业最早开设于50年代,由于其专业面宽,适用性广,所以到如今一直很受欢迎,据教育部门最新公布的本科专业设置目录中,它属于工科电气信息类。本文中主要针对这类电气自动化技术的一些发展趋势进行探讨。
2 全控型电力电子开关逐步取代半控型晶闸管
50年代末出现的晶闸管标志着运动控制的新纪元。它是第一代电子电力器件,在我国至今仍广泛用于直流和交流传动控制系统。随着交流变频技术的兴起,相继出现了全控式器件―CTR、GTO、P-MOSEFT等。这是第二代电力电子器件。由于目前所能生产的电流/电压定额和开关时间的不同,各种器件各有其应用范围。GTR的二次击穿现象以及其安全工作区受各项参数影响而变化和热容量小、过流能力低等问题,使得人们把主要精力放在根据不同的特性设计出合适的保护电路和驱动电路上,这也使得电路比较复杂,难以掌握。GTO是一种用门极可关断的高压器件,它的主要缺点是关断增益低,一般为4~5,这就需要一个十分庞大的关断驱动电路,且它的通态压降比普通晶闸管高,约为Zv~4.5v,开通di/dt和关断dv/dt也是限制GTO推广运用的另一原因,前者约为500A/us,后者约为500V/us,这就需要一个庞大的吸收电路。
由于GIR、GTO等双极性全控性器件必须要有较大的控制电流,因而使门极控制电路非常庞大,从而促进厂新一代具有高输人阻抗的MOS结构电力半导体器件的一切。功率MOSFET是一种电压驱动器件,基本上不要求稳定的驱动电流,驱动电路只需要在器件开通时提供容性充电电流,而关断时提供放电电流即可,因此驱动电路很简单。它的开关时间很快,安全工作区十分稳定,但是P-MOSFET的通态电压降随着额定电压的增加而成倍增大,这就给制造高压P-MOSFET造成了很大困难。IGBT是P-MOSFET工 艺 技 术 基 础 上 的 产 物, 它 兼 有MOSFET高输人阻抗、高速特性和GTR大电流密度特性的混合器件。其开关速度比P-MOSFET低,但比GTR快;其通态电压降与GTR相拟约为1.5V~3.5v,比P-MOSFET小得多,其关断存储时间和电流卜降时间为别为0.2us一04us和0.2us~1.5us,因而有较高的工作频率,它具有宽而稳定的安个工作区,较高的效率,驱动电路简单等优点。MOS控制晶闸管(MCT)是一种在它的单胞内集成了MOSFET的品闸管,利用MOS门来控制品闸管的开通和关断,具有晶闸管的低通态电压降,但其工作电流密度远高IGBT和GTR,在理论上可制成几千伏的阻断电压和几十千赫的开关频率,且其关断增益极高。
3 变换器电路从低频向高频方向发展
随着电力电子器件的更新,由它组成的变换器电路也必然要换代。应用普通晶闸管时,直流传功的变换器主要是相控整流,而交流变频传动则是交一直一交变频器。当电力电子器件进入第二代后,更多是采用PWM变换器了。采用PWM方式后,提高了功率因数,减少了高次谐波对电冈的影响,解决了电动机在低频区的转矩脉动问题。但是PWM逆变器中的电压、电流的谐波分量产生的转矩脉动作用在定转子上,使电机绕组产生振动而发出噪声。为了解决这个问题,一种方法是提高开关频率,使之超过人耳能感受的范围,但是电力电子器件在高电压大电流的情况下导通或关断,开关损耗很大。开关损耗的存在限制了逆变器工作频率的提高。1986年美国威斯康星大学Divan教授提出谐振式直流环逆变器。传统的逆变器是挂在稳定的直流母线上,电力电子器件是在高电压下进行转换的‘硬开关,其开关损耗较大,限制了开关在频率上的提高。而谐夺式直流环逆变器是把逆变器挂在高频振荡过零的谐振路上,使电力电子器件在零电压或零电流下转换,即工作在所谓的‘软开关状态下,从而使开关损耗降低到零。这样,可以使逆器尺寸减少,降低成本,还可能在较高功率上使逆变器集成化。因此,谐振式直流逆变器电路极有发展前途。
4 交流调速控制理论日渐成熟
1971年,德国学者F,Blaschke发表论文阐明了交流电机磁场定向即矢量控制的原理,为交流传动高性能控制奠定了理论基础。矢量控制的基本思想是仿照直流电动机的控制方式,把定子电流的磁场分量和转矩分量解耦开来,分别加以控制。这种解耦,实际上是把异步电动机的物理模型设法等效地变换成类似于直流电动机的模式,这种等效变换是借助于坐标变换完成的。它需要检测转子磁链的方向,且其性能易受转子参数,特别是转子回路时间常数的影响。加上矢量旋转变换的复杂性,使得实际的控制效果难于达到分析的结果。1985年德国鲁尔大学的Depenbrock教授首次提出了直接转矩控制的理论,接着1987年又把它推广到弱磁调速范围。大致来说,直接转矩控制,用空间矢量的分析方法,直接在定子坐标系下分析计算与控制电流电动机的转矩。采用定子磁场定向,借助于离散的两点式调节(Band一Band控制)产生PWM信号,直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。
5 通用变频器开始大量投入实用
一般把系列化、批量化、占市场量最大的中小功率如400KVA以下的变频器称为通用变频器。从产品来看,第一代是普通功能型U/F控制型,多采用16位CPU,第二代为高功能型U/F型,采用32位DSP或双16位CPU进行控制,采用了磁通补偿器、转差补偿器和电流限制拄制器.具有挖土机和“无跳闸”能力,也称为“无跳闸变频器”。这类变频器,目前占市场份额最大。第三代为高动态性能矢量控制型。它采用全数字控制,可通过软件实现参数自动设定,实现变结构控制和自适应控制,可选择U/F频率开环控制、无速度传感器矢量控制和有速度传感器矢量控制,实现了闭环控制的自优化。从技术发展看,虽然电力半导体器件有GTO、GTI、IGBT,但以后两种为主,尤以IGBT为发展趋势:变频器的可靠性、可维修性、可操作性即所谓的RAs(Availability,Serviceability)功能也由于采用单片机控制动技术而得以提高。
参考文献:
[1] 潘大文,牛兵.电力工程建设场地“五通一平”综述[J].电力建设,2005(3).
[2] 戴 宝 生.在 电 力 工 程 建 设 中 贯 彻 以 人 为 本[J].农 电 管理,2005(2).
[3] 湖南省人民政府办公厅关于提高重点电力工程建设资金征收标准的通知[J].湖南政报,1994(3).
[4] 苏瑞姬.分析电力工程建设档案管理[J].广东科技,2008.
[5] 陈华生.情系无电村汗洒瑶乡路[J].广西电业,2010.