APP下载

施氮提高矿山生态型水蓼富集土壤磷能力研究

2018-10-17李廷轩张锡洲

植物营养与肥料学报 2018年5期
关键词:生态型施氮氮量

郭 瑀,李廷轩,张锡洲

(四川农业大学资源学院,四川成都 611130)

农业生产中磷肥的大量投入和畜禽粪便的不合理施用,导致磷在土壤中大量积累,易对生态环境构成威胁[1]。磷富集植物对高磷环境具有很强的适应性,可有效提取土壤中过量的磷[2]。目前,筛选出的黄瓜 (Cucumis sativus)、西葫芦 (Cucurbita pepo)、狗牙草 (Cynodon dactylon)、黑麦草 (Lolium multiflorum)等磷富集植物,存在着磷含量较低或生物量较小的缺点,导致植物对磷的积累能力有限[3,4]。因此,需寻求一种经济有效的方法以提高磷富集植物的磷积累能力。

间作种植豆科植物、添加溶磷微生物或培育转基因磷富集植物等均能提高植物磷积累能力[5–7],但在应用上存在较多限制。再力花 (Thalia dealbata)、鸢尾 (Iris tectorum)、菖蒲 (Acorus calamus) 等不同湿地植物对污水中的氮和磷均具有较好的去除效果[8];黄瓜在吸收磷的同时,对氮也具有较大的需求量,且随生长期的延长其氮磷含量均逐渐增加[9]。因此,可采用施氮的方式提高磷富集植物的磷积累能力。余红梅等[10]指出,施氮可显著提高种植在高磷土壤上的磷富集植物矿山生态型粗齿冷水花 (Pilea sinofasciata)的生物量和磷含量,增强植物对土壤磷的提取能力;适宜施氮可有效提高磷富集牧草百喜草 (Paspalum notatum) 和扁穗牛鞭草 (Hemarthria altissima) 的生物量和磷去除量,以降低表层土壤磷含量[11]。

前期研究发现,高无机磷条件下矿山生态型水蓼磷富集能力强于非矿山生态型,地上部磷积累量可达105 mg/株,非矿山生态型仅为31.3 mg/株[12];有机磷源处理下矿山生态型水蓼表现出较强的磷吸收积累能力,但地上部磷积累量较无机磷处理有所下降[13]。由此可见,矿山生态型水蓼对高磷环境具有很强的适应能力,其磷富集能力仍有待提高。本文以磷富集植物矿山生态型水蓼为材料,研究高磷条件下施氮对矿山生态型水蓼磷积累能力的影响,确定适宜施氮量,为后期合理利用矿山生态型水蓼提取土壤中过量的磷提供一定的理论依据。

1 材料与方法

1.1 供试材料

供试植物:水蓼 (Polygonum hydropiper),矿山生态型种子采自四川省什邡磷矿区 (104°01′ E, 31°25′ N),非矿山生态型种子采自四川省都江堰市灵岩山(103°36′ E, 31°00′ N)。

供试土壤:灰潮土,采自四川省都江堰市浦阳镇双柏村,基本理化性质为pH 6.32、有机质15.9 g/kg、全氮1.39 g/kg、碱解氮53.1 mg/kg、速效钾51.8 mg/kg、有效磷4.65 mg/kg。

供试肥料:尿素 (N 46.67%)、磷酸二氢钾 (P2O552.1%,K2O 34.6%),均为分析纯。

1.2 试验设计与处理

试验设施氮 (N)量为 0 (CK)、25、50、100、200 mg/kg土共5个处理,所有处理基施磷 (P) 800 mg/kg。每处理重复3次,完全随机排列。采用土培盆栽试验,将土壤风干磨碎后,过筛混匀,每盆 (6 L)装土6 kg。装盆前施入磷,陈化4周,移栽前施入氮肥,磷、氮施入时以溶液的形式加入,并充分混匀。取2.5 kg土装入直径15 cm、高7.5 cm的尼龙纱网根袋中 (400目,孔径约38 µm),置于盆中央,其余3.5 kg土装入盆中。陈化后土壤有效磷为457 mg/kg。

分别选取饱满度一致的两种生态型水蓼种子,用10%的H2O2消毒30 min,经30℃温水浸泡6 h后,播种于装有珍珠岩和蛭石的塑料盘,放入25℃恒温培养箱中,待种子萌发后,从培养箱中取出在室温下培育。待水蓼生长至三叶一心时,选取长势一致的幼苗移栽至根袋中,每盆种2株,按田间持水量的70%确定灌水量,采用自然光照和常规管理。试验于2015年6月至8月,在四川农业大学大佛寺教学科研实习苗圃有防雨设施的网室中进行。

1.3 样品采集与制备

于移栽后10周采样,植株样品先用自来水冲洗再用蒸馏水润洗,洗净后用吸水纸擦干,将其分为地上部和地下部。装袋后于105℃杀青30 min,75℃烘干至恒重,粉碎后过1 mm筛用于测定磷含量。

根袋内去掉表面2 cm土,收集袋内其余土壤作为根际土,根袋外2 cm土壤为非根际土。土样风干贮存,用于土壤有效磷的测定。

1.4 测定项目及方法

采用H2SO4–H2O2消煮—钒钼黄比色法[14]测定植株磷含量;土壤有效磷测定采用0.5 mol/L NaHCO3提取—钼锑抗比色法[14]。

1.5 数据处理

富集系数 = 植株磷含量/土壤有效磷含量;转运系数 = 植株地上部磷含量/地下部磷含量;采用DPS (11.0) 进行统计分析,选择LSD法进行多重比较,图表制作采用Excel (2013) 和Origin 8.1。

2 结果与分析

2.1 高磷条件下施氮对矿山生态型水蓼生物量的影响

图1 不同施氮量下两种生态型水蓼地上部和地下部的生物量Fig. 1 Biomass of the shoots and the roots in two ecotypes of Polygonum hydropiper grown under different dosages of N

由图1可知,随施氮量的增加,两种生态型地上部和地下部生物量均先升高后降低,在施氮量为100 mg/kg时达到最大,其中矿山生态型地上部和地下部生物量分别为40.03 g/株和3.24 g/株,地上部生物量明显大于地下部。各施氮处理下,矿山生态型地上部生物量,分别为不施氮处理的2.58、3.91、4.57、2.59倍。但两种生态型地上部生物量无显著差异。与非矿山型相比,施氮更有利于矿山生态型地下部生物量的提高,各施氮处理下,矿山生态型地下部生物量为不施氮处理的2.10、3.19、3.48、2.90倍,非矿山生态型为1.76、2.17、2.76、1.85倍。但矿山生态型地下部生物量在0、25、100 mg/kg施氮量下显著低于非矿山生态型,仅为非矿山生态型的56.7%、67.7%、71.1%。以上结果表明,100 mg/kg施氮量更有利于水蓼地上部生物量的增加。

2.2 高磷条件下施氮对矿山生态型水蓼磷积累能力的影响

2.2.1 磷含量 由表1可知,随施氮量的增加,两种生态型地上部和地下部磷含量逐渐增加,矿山生态型地上部和非矿山生态型地下部在100 mg/kg后趋于平稳。高磷条件下,矿山生态型地上部和地下部磷含量在施氮处理下均显著高于不施氮处理。各施氮处理下,矿山生态型地上部磷含量为不施氮处理的1.14、1.25、1.33、1.32倍,矿山生态型地下部的磷含量为不施氮处理的1.13、1.20、1.22、1.53倍。矿山生态型地上部磷含量在50、100、200 mg/kg施氮量下均显著高于非矿山生态型,为非矿山生态型的1.14、1.08、1.03倍;但相同处理下,矿山生态型的地下部磷含量均显著低于非矿山生态型,为非矿山生态型的70.0%、73.1%、74.4%、70.8%、91.8%。表明施氮能有效提高矿山生态型地上部磷含量。

2.2.2 磷积累量 由图2可知,随着施氮量的增加,两种生态型地上部和地下部磷积累量逐渐增加,两种生态型地上部及非矿山生态型地下部的磷积累量在100 mg/kg达到最大,其中矿山生态型地上部磷积累量最大为228 mg/株。施氮显著提高了矿山生态型地上部和地下部的磷积累量,各施氮处理下,矿山生态型地上部磷积累量分别为不施氮处理的2.93、4.89、6.10、3.43倍;矿山生态型地下部磷积累量为不施氮的2.38、3.83、4.44、4.24倍。相同施氮量下,矿山生态型地上部磷积累量均显著高于非矿山生态型,为非矿山生态型的1.08、1.25、1.11、1.09倍;但矿山生态型地下部磷积累量均显著低于非矿山生态型,仅为非矿山生态型的39.5%、49.4%、62.2%、52.5%、77.7%。表明,施氮更有利于矿山生态型水蓼地上部磷积累量的增加。

表1 不同施氮量下两种生态型水蓼的磷含量 (g/kg)Table 1 P concentrations in two ecotypes of Polygonum hydropiper grown under different dosages of N

图2 不同施氮量下两种生态型水蓼地上部和地下部的磷积累量Fig. 2 P accumulation of the shoots and the roots in two ecotypes of Polygonum hydropiper grown under different dosages of N

2.2.3 磷富集系数和转运系数 富集系数反映了植物对磷的吸收能力。由表2可知,施氮增加了两种生态型的磷富集系数,其中矿山生态型磷富集系数在100 mg/kg施氮量下达到最大值。相同施氮量下,矿山生态型磷富集系数高于非矿山生态型,在50、100 mg/kg时分别为非矿山生态型的1.14、1.08倍。表明施氮促进了矿山生态型水蓼对磷的吸收。

转运系数主要表征植物向地上部转移磷的能力。随施氮量的增加,矿山生态型水蓼转运系数表现为先升高后降低。在25、50、100 mg/kg施氮处理下,矿山生态型转运系数均高于不施氮处理,最高可达1.33。相同施氮量下,矿山生态型转运系数高于非矿山生态型,在25、50、100 mg/kg时分别为非矿山生态型的1.38、1.53、1.53倍。因此,施氮有利于矿山生态型水蓼将更多的磷转移到地上部,增强植株地上部对磷的积累。

2.3 施氮对矿山生态型水蓼根际土壤有效磷含量的影响

由表3可知,随着施氮量的增加,矿山生态型水蓼根际土壤有效磷含量先升高后趋于平稳,而非矿山生态型根际土壤和两种生态型非根际土壤均无显著变化。在50、100、200 mg/kg施氮量下,矿山生态型根际土壤有效磷含量与不施氮相比分别增加了8.39%、6.45%、7.74%。相同施氮量下,矿山生态型根际土壤有效磷含量均显著高于非矿山生态型根际土壤,分别为非矿山生态型的1.29、1.33、1.39、1.33、1.42倍;相同施氮量下,两种生态型非根际土壤有效磷含量无显著差异。同时,矿山生态型根际土壤有效磷含量明显高于非根际土壤,为非根际土壤的1.26、1.31、1.42、1.40、1.39倍,而非矿山生态型根际土壤与非根际土壤之间差异不大。表明,施氮提高了矿山生态型水蓼根际土壤的有效磷含量。

表2 不同施氮量下两种生态型水蓼的磷富集系数和转运系数Table 2 Bioaccumulation coefficients and translocation factors of P in two ecotypes of Polygonum hydropiper grown under different dosages of N

表3 不同施氮量下两种生态型水蓼的土壤有效磷含量 (mg/kg)Table 3 Soil available P content in two ecotypes of Polygonum hydropiper grown under different N dosages

3 讨论

目前,有关磷富集植物的研究多集中于磷富集植物的筛选比较和富磷特性的研究等方面,对提高植物磷富集能力的研究较少[15,16]。氮是植物所需的大量营养元素,参与植物生长调节[17]。增施氮肥可显著增加植物茎秆、叶片等部位的生物量[18]。Soons等[19]发现,施氮可增加高磷土壤植物地上部的生物量,与不施氮相比生物量可增加139%;种植在高磷土壤上的磷富集植物黑麦草和狗牙根,在适宜施氮条件下也具有更大的生物量[3]。本研究中,高磷条件下,施氮促进了矿山生态型水蓼地上部生物量的增加,且在施氮量为100 mg/kg时达到最大。高磷条件下,植物净光合速率下降,施氮能提高叶片光合作用,促进光合产物积累,进而促进生物量增加[20]。不同生态型植物对环境具有不同的适应性,生长在逆境中的植物具有更高的耐性[21]。在本研究中,虽在各施氮量下,矿山生态型地下部生物量显著低于非矿山生态型。但前期水培试验发现,矿山生态型的总根长、比根长、根表面积均显著高于非矿山生态型,具有较多细根结构[22]。较多的细根结构更有利于矿山生态型对养分的吸收。

施氮影响植物生长的同时,也参与磷的吸收积累与分配[23]。增加施氮量,能提高植物对磷的吸收和积累能力[24–25]。Dodd等[26]指出,施用氮肥能显著提高牧草的磷积累量,降低土壤中可溶性磷的含量,减少磷淋失风险。本研究中,施氮增加了矿山生态型地上部的磷含量、磷积累量,其中磷积累量在施氮量为100 mg/kg时达到最大,为228 mg/株。在高磷水培条件和高磷猪粪处理下,矿山生态型水蓼地上部磷积累量为40.5 mg/株和65.9 mg/株[13,27];多年生磷富集植物矿山生态型粗齿冷水花的整株磷积累量也仅为129 mg/株[10],均低于本研究中适宜施氮条件下矿山生态型水蓼地上部磷积累量,说明适宜施氮能提高矿山生态型的磷积累能力。施氮促进植物中磷积累量的增加,与氮磷协同作用密切相关[28]。施氮能增加磷酸盐吸收相关基因的表达量,促进植物对磷的吸收[29–30]。同时,矿山生态型地上部磷含量、磷积累量、转运系数在施氮量为50、100、200 mg/kg时,均高于非矿山生态型,具有更强的向地上部富集磷的能力。根系吸收的磷主要通过磷酸盐转运蛋白向地上部运输[31]。磷酸盐转运蛋白合成量的增加,能促进磷从根系向地上部的运输,增加地上部磷积累量[32]。较高的磷酸盐转运蛋白丰度也能提高植物对高磷条件的适应性[33]。矿山生态型地上部磷积累量更高而地下部磷积累量更低,可能是由于体内具有更高的磷酸盐转运蛋白。应用植物修复技术去除土壤中的污染物,一般仅收割植物地上部,地下部被保留在土壤中[34]。矿山生态型水蓼将磷更多地积累在地上部,地下部积累较少,更有利于通过地上部的收获,带走土壤中过量的磷。

有效磷是土壤中可被植物直接吸收利用的磷形态,是评价土壤供磷能力的重要指标[35]。在不施肥的情况下,植物的生长会降低植物根际土壤中有效磷的含量[36]。周纪冬等[37]指出,随着施氮强度的增加,土壤有效磷的含量呈增加趋势。本研究发现,与不施氮相比,施氮显著提高了矿山生态型根际土壤有效磷含量。这可能与根系分泌物有关[38]。施氮可增加植物根系分泌物的含量,通过调节根际土壤pH,降低土壤对磷的固定,提高根际土壤的有效磷含量[39]。此外,矿山生态型根际土壤的有效磷含量显著高于非矿山生态型。矿山生态型水蓼根系分泌的酸性磷酸酶和植酸酶活性均高于非矿山生态型[12]。磷酸酶活性的增加,有利于土壤中难利用的磷向有效态转化[40]。因此,矿山生态型根际土壤中有效磷含量更高,更有利于植株对磷的吸收积累。

4 结论

高磷条件下,施氮增加了矿山生态型水蓼生物量、磷含量和磷积累量,并促进了植株中的磷向地上部迁移,在100 mg/kg施氮量下,地上部磷积累量达228 mg/株。与非矿山生态型相比,施氮更有利于矿山生态型磷积累能力的提升。施氮为矿山生态型水蓼根际土壤提供了更多可利用的磷,促进了植物对磷的积累。本研究中,矿山生态型水蓼适宜施氮量为100 mg/kg。

猜你喜欢

生态型施氮氮量
多元策略的生态型游客中心
施氮水平对油菜生育后期氮素吸收积累和分配的影响
氮肥施用对不同燕麦品种生长发育的影响
Agg Hab生态型聚合栖地
番茄有机生态型无土栽培
不同施氮方法对两种株型糯玉米穗部性状及产量的影响
均匀施氮利于玉米根系生长及产量形成
高磷对矿山生态型水蓼磷富集特性的影响
施氮水平对超高产夏玉米籽粒及植株形态学特征的影响
高、中、低产田水稻适宜施氮量和氮肥利用率的研究