方法在握,驰骋考场
2018-09-25陈敏
中学课程辅导高考版·学生版 2018年7期
我们知道,中学数学的运算包括数的计算,式的恒等变形,方程和不等式同解变形,初等函数的运算和求值,各种几何量的测量与计算,求数列和函数、概率、统计的初步计算等.高考命题对运算求解能力的考查主要是针对算法、推理及以代数运算为主的考查.因此在高中数学中,对于运算求解能力的培养至关重要.那么,同学们该如何提高自己的计算能力呢?关键是掌握几种基本而又实用的解题方法.有道是:方法在握,方可驰骋考场.
评注:构造法在高中数学中已有了比较广泛的应用,它是数学方法的有机组成部分,是历年高考的重点和热点,主要依据题意,构造恰当的函数解决问题.首先,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,用函数的观点加以分析,常可使问题变得明了,从而易于找到一种科学的解题途径.其次,数量关系是数學中的一种基本关系,现实世界的复杂性决定了数量关系的多元性.因此,如何从多变元的数量关系中选定合适的主变元,从而揭示其中主要的函数关系,有时便成了数学问题能否“明朗化”的关键所在.
(作者:陈敏,太仓市明德高级中学)