APP下载

OFDM基于子载波相移的低复杂度PTS方法

2018-09-12刘鹏成徐湛

现代电子技术 2018年17期

刘鹏成 徐湛

摘 要: 正交频分复用(OFDM)是一种多载波技术,但其信号存在较高的峰均比(PAPR)问题,通过发送端功率放大器时需要较高的线性工作范围。研究一种新的低复杂度部分传输序列(PTS)峰均比抑制方法,该方法在时域对不同分组子载波相移,寻找低PAPR的OFDM信号传输。通过传递少量相移信息,可以在接收端对基带信号逆向移位操作恢复原始基带信号。仿真结果表明,所提方法在低复杂度下可以有效降低PAPR,同时保持较好的误比特率性能。

关键词: OFDM; 多载波技术; PAPR; PTS; 峰均比抑制; 子载波相移

中图分类号: TN919.3?34 文献标识码: A 文章编号: 1004?373X(2018)17?0015?05

Abstract: The orthogonal frequency division multiplexing (OFDM) is a kind of multicarrier technique. Its signal has high peak?to?average power ratio (PAPR), so it requires higher linear operating range while transmitting through the power amplifier of transmitter. A new kind of partial transmit sequence (PTS) PAPR suppression method with low complexity is proposed, with which the phase shift of the different grouped subcarriers is permormed in the time domain to find the OFDM signal transmission with low PAPR. By transferring a small amount of phase shift information, the reverse shift operation is carried out for the baseband signal in the receiving terminal to restore to the original baseband signal. The simulation results show that the proposed method can effectively reduce the PAPR in low complexity while maintaining the perfect bit error rate performance.

Keywords: OFDM; multicarrier technique; PAPR; PTS; PAPR suppression; subcarrier phase shift

0 引 言

正交頻分复用(OFDM)具有抗多径干扰、频谱利用率高、支持大容量信息传输等优点,已广泛应用于移动通信系统。OFDM时域信号由多个独立且相互正交的子载波叠加而成,具有较高的峰值平均功率比(PAPR)。当PAPR过高的OFDM信号通过功率放大器等器件时容易进入其非线性区,致使信号发生畸变,影响系统的误比特率性能[1]。常用的PAPR抑制技术主要分为三类,即预畸变技术[2]、信号编码技术[3?4]、概率类技术[5?6]。预畸变技术是一种有效降低峰均比的技术,但会对OFDM信号造成非线性失真,导致严重的带内干扰、带外噪声,从而降低整个系统的误比特率性能和频谱效率。编码类技术可用于传输的信号码字集合,只有较低幅度峰值的码字才会被选择用于传输信息,但该技术会产生编码冗余度。概率类技术可以降低OFDM信号高峰值出现的概率,在接收端采用相反的方法恢复原始信号。现有的概率类技术包括选择性映射(SLM)、部分传输序列(PTS)等。文献[7?11]研究基于SLM方法的峰均比抑制技术,文献[12?14]研究基于PTS方法的峰均比抑制技术,但这些方法在选择低PAPR的OFDM信号时均存在高复杂度问题。

针对以上问题,本文研究一种基于PTS算法的低复杂度峰均比抑制方法,该方法是对传统PTS算法的改进,且与文献[15]中MPTS算法相比,可同时采用相邻随机分组方式,分组子载波划分更灵活,备选序列个数增加。

1 子载波相移原理

OFDM通信系统模型如图1所示,在IFFT与循环前缀之间插入峰值检测和子载波相移模块,在接收端对基带信号逆向移位操作恢复原始基带信号。

3 复杂度分析

4 仿真与分析

本节对所提算法综合性能进行仿真验证,统计OFDM信号分组子载波相移PAPR的CCDF和BER特性。以下仿真采用等效基带,且接收端已知子载波相移信息。限幅门限设置为信号平均幅值-1.5 dB,以方便统计该方法PAPR的CCDF性能。采用相邻均匀分组方式。OFDM信号采用4倍过采样可接近模拟信号的PAPR CCDF性能,接收端采用奈奎斯特速率接收,仿真参数设置如表2所示。

4分组,相移16次,不同步长PAPR的CCDF统计特性如图4所示。步长高于8时PAPR的CCDF性能基本相同,但与步长2相比有明显改善。当采用4倍过采样,相邻4个采样点具有相关性,所以步长为2时,性能有损失。

步进为32,相移16次,不同分组数PAPR的CCDF统计特性如图5所示。分组数高于4时PAPR的CCDF性能基本相同,但与2分组数相比有所改善。

4分组,步进为32,不同相移次数PAPR的CCDF统计特性如图6所示。相移次数对PAPR的CCDF性能影响最大,相移次数为4和32在PAPR的CCDF值为[10-3]时,峰均比相差1 dB。步长和分组数对PAPR的CCDF作用不大。

设置4分组,步进为32,相移64次,得到修改的PTS与传统4分组64个备选信号PAPR的CCDF曲线如图7所示,修改的PTS较CPTS有更好的PPAR CCDF性能。

设置4分组,步进为32,相移9次,OFDM信号在高斯白噪声信道条件下,得到误比特率如图8所示。与未限幅信号相比,误比特率增大。

5 结 论

本文提出一种新的峰均比抑制方法,对超过峰值门限值的OFDM信号分组子载波相移,寻找低PAPR的OFDM信号。仿真结果证明,时域子载波相移方法有效改善了OFDM信号峰均比,实现复杂度低,且通过传递少量相移信息,可以在接收端对基带信号逆向移位操作恢复原始基带信号。该方法不会破坏OFDM信号子载波的正交性且不会产生带外辐射,保持了较好的误比特性能。

参考文献

[1] 郝喜国.正交频分复用系统中降低PAPR的算法研究[D].太原:太原理工大学,2016.

HAO Xiguo. Research on PAPR reduction algorithm in orthogonal frequency division multiplexing system [D]. Taiyuan: Taiyuan University of Technology, 2016.

[2] 张春蕾,张亮,马志程,等.联合改进法降低OFDM?PON系统的峰均比[J].光通信技术,2015,39(1):8?10.

ZHANG Chunlei, ZHANG Liang, MA Zhicheng, et al. Joint improvement method to reduce peak?to?average ratio of OFDM?PON system [J]. Optical communication technology, 2015, 39(1): 8?10.

[3] QU Daiming, LI Li, JIANG Tao, et al. Invertible subset LDPC code for PAPR reduction in OFDM systems with low complexity [J]. IEEE transactions on wireless communications, 2014, 13(4): 2204?2213.

[4] HASAN M M. A new PAPR reduction technique in OFDM systems using linear predictive coding [J]. International journal of wireless personal communications, 2014, 75(1): 707?721.

[5] DUANMU Chunjiang, CHEN Hongtao. Reduction of the PAPR in OFDM systems by intelligently applying both PTS and SLM algorithms [J]. International journal of wireless personal communications, 2014, 74(2): 849?863.

[6] WOO J Y, JOO H S, KIM K H, et al. PAPR analysis of class?III SLM scheme based on variance of correlation of alternative OFDM signal sequences [J]. IEEE communications letters, 2015, 19(6): 989?992.

[7] JI Jinwei, REN Guangliang, ZHANG Huining, et al. A semi?blind SLM scheme for PAPR reduction in OFDM systems with low?complexity transceiver [J]. IEEE transactions on vehicular technology, 2015, 64(6): 2698?2703.

[8] EL?MAHALLAWY M S, HAGRAS E A A, FATHY S A. Genetic algorithm for PAPR reduction in SLM wavelet?OFDM systems [C]// 2014 IEEE International Conference on Computer, Control, Informatics and Its Applications. Bandung: IEEE, 2014: 136?140.

[9] LUO Renze, LI Rui, DANG Yupu, et al. Two improved SLM methods for PAPR and BER reduction in OFDM?ROF systems [J]. Optical fiber technology, 2015, 21(1): 26?33.

[10] LIANG H Y. Integrating CE and modified SLM to reduce the PAPR of OFDM systems [J]. International journal of wireless personal communications, 2015, 80(2): 709?722.

[11] PYLA S, PADMA R K, BALASUBRAHMANYAM N. Improvement of PAPR in OFDM systems using SLM technique and digital modulation schemes [M]. India: Springer, 2014.

[12] KU S J. Low?complexity PTS?based schemes for PAPR reduction in SFBC MIMO?OFDM systems [J]. IEEE transactions on broadcasting, 2014, 60(4): 650?658.

[13] IBRAHEEM Z T, RAHMAN M M, YAAKOB S N, et al. Effect of partition length variability on the performance of adjacent partitioing PTS in PAPR reduction of OFDM systems [C]// 2014 IEEE International Symposium on Computer Applications and Industrial Electronics. Penang: IEEE, 2014: 24?28.

[14] WANG Zhongpeng, CHEN Shoufa. Reduction PAPR of OFDM signals by combining grouped DCT precoding with PTS [J]. Journal of signal and information processing, 2014, 5(4): 135?142.

[15] 何向东,杨霖.OFDM系统中基于时域信号部分循环移位的低复杂度PTS算法[J].系统工程与电子技术,2015,37(9):2135?2140.

HE Xiangdong, YANG Lin. Low complexity PTS algorithm based on partial cyclic shift of time domain signals in OFDM system [J]. Systems engineering and electronics, 2015, 37(9): 2135?2140.