APP下载

天才与疯子

2018-09-07李建东

初中生世界·七年级 2018年7期
关键词:铜币珠子疯子

李建东

原始人采用把珠子和铜币逐个相比的方法来判断珠子和铜币哪一个多.这个朴素的“一一对应”原理仍是我们今天数数的方法.所不同的是我們不必再把实物与实物进行比较,而是把实物与自然数的整体{1,2,…,n}进行比较.比如,当我们数5个珠子时,实际上是把它们分别与1、2、3、4、5一一对应而数出来的.

这一思想,被数学家康托成功地用来比较无穷集合的大小:如果两个集合之间存在一一对应,则这两个集合的元素就一样多.

康托的有关无穷的概念,震撼了知识界.

由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结论(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度.不到30岁的康托向神秘的无穷宣战.他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应.这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”.

天才总是不被世人所理解.康托的观点与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂.有人说,康托的集合理论是一种“疾病”,康托的概念是“雾中之雾”,甚至说康托是“疯子”.

来自数学权威们的巨大精神压力终于摧垮了康托,他心力交瘁,患上了神经分裂症,被送进精神病医院.他在集合论方面许多非常出色的成果,都是在精神病发作的间歇时获得的.真金不怕火炼,康托的思想终于大放光彩.1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托的工作:“可能是这个时代所能夸耀的最巨大的工作.”

(摘编者单位:北京外国语大学附属苏州湾外国语学校)

猜你喜欢

铜币珠子疯子
我的房间里有头熊
我可以做你的朋友吗
荡秋千
与树一样大的珠子
摆珠子
纸珠子
川陕苏维埃铜币伪品现状分析
猜珠子