黄芪多糖抑制糖尿病心肌氧化应激的初步研究
2018-05-23陈蔚鞠婧王浩
陈蔚 鞠婧 王浩
[摘要] 目的 探討黄芪多糖对糖尿病心肌氧化应激的影响。 方法 将16只6~8周龄的雄性健康转基因SOD2+/-KO小鼠(C57BL/6J背景)按照随机数字表法随机分为转基因组及黄芪多糖转基因组(n = 8);将24只正常对照小鼠分为对照组、糖尿病组及黄芪多糖糖尿病组(n = 8)。糖尿病组和黄芪多糖糖尿病组采用链脲佐菌素腹腔注射法制作糖尿病动物模型,糖尿病模型建成功后,给予黄芪多糖糖尿病组和黄芪多糖转基因组小鼠黄芪多糖注射液治疗16周,其余组则给予等量生理盐水灌胃。采用超声心动图检测心脏功能,HE染色观察心肌组织结构,超声电镜观察心肌超微结构,免疫组化法检测心肌细胞增殖活性,TUNEL法检测心肌细胞凋亡,荧光定量法检测心肌活性氧(ROS)含量,Western blot法检测心肌SOD2蛋白含量,SODⅡ试剂盒检测心肌SOD2酶活性。 结果 与对照组比较,糖尿病组和转基因组LVSP、±LVdp/dt下降,LVEDP升高,心肌组织和超微结构存在严重损伤,细胞凋亡和坏死程度增加,SOD2活性被显著抑制,而黄芪多糖治疗组小鼠以上指标均得到改善(P < 0.05)。 结论 黄芪多糖能抑制糖尿病心肌的氧化应激损伤。
[关键词] 黄芪多糖;糖尿病;心肌病;氧化应激;SOD2
[中图分类号] R5871.1 [文献标识码] A [文章编号] 1673-7210(2018)03(c)-0004-04
[Abstract] Objective To investigate the effect of Astragalus polysaccharides for myocardial oxidative stress of diabetes mellitus. Methods Sixteen male healthy transgenic SOD2+/-KO mice aged 6-8 weeks old (C57BL/6J) were randomly divided into transgenic group and Astragalus polysaccharides transgenic group by random number table method (n = 8). The 24 normal control mice were divided into control group, diabetes mellitus group and Astragalus polysaccharides diabetes mellitus group (n = 8). Single intraperitoneal injection of Streptozotocin was utilized to establish mice model with diabetes mellitus in diabetes mellitus group and Astragalus polysaccharides diabetes mellitus group, after the diabetes mellitus model was made successfully, the mice in Astragalus polysaccharides diabetes mellitus group and Astragalus polysaccharides transgenic group were treated with Astragalus Polysaccharides Injection for 16 weeks, and the other groups were given equal amount of normal saline. Echocardiography was used to detect cardiac function, HE staining was used to observe the structure of myocardial tissue, ultrasonic electron microscopy was used to observe the myocardial ultrastructure, immunohistochemistry was used to detect the proliferative activity of cardiomyocytes, TUNEL method was used to detect apoptosis of cardiomyocytes; fluorescent quantitative assay was used to detect the contents of myocardial reactive oxygen species (ROS), Western blot was used to detect the contents of myocardial SOD2 protein, calbiochem SOD assay kit Ⅱ was used to detect the activity of myocardial SOD2. Results Compared with the control group, LVSP and ±LVdp/dt in diabetes mellitus group and transgenic group were decreased, and LVEDP was increased, myocardial tissue and ultrastructure were seriously damaged, the degree of cells apoptosis and necrosis was increased, and the activity of SOD2 was significantly inhibited. However, the indices above in the Astragalus polysaccharides were all signifcantly improved (P < 0.05). Conclusion Astragalus polysaccharides can inhibit the myocardial oxidative stress injury of diabetes mellitus.
[Key words] Astragalus polysaccharide; Diabetes; Cardiomyopathy; Oxidative stress; SOD2
糖尿病心肌病(diabetic cardiomyopathy,DCM)是一种独立于高血压和动脉粥样硬化之外的特异性心肌病变,与糖尿病患者心血管疾病的高发病率和高病死率密切相关[1-3],氧化还原失平衡是DCM的主要发病机制之一[4-7]。过氧化物岐化酶(superoxide dismutase,SOD)是体内最重要的抗氧化应激活酶之一,其中SOD2是抑制心肌线粒体生成活性氧(ROS)的主要抗氧化应激活酶。研究表明[8-13],糖尿病鼠心肌细胞的过度凋亡、氧化还原失衡与心肌内SOD2表达降低显著相关,调控SOD2表达是阻断糖尿病心肌氧化还原失衡的一个重要靶点。黄芪是一味传统中药,黄芪多糖(Astragalus polysaccharides,APS)是其主要活性成分之一。本研究采用黄芪多糖对DCM和SOD2+/-小鼠模型进行治疗,探讨其抑制DCM氧化应激损伤的可能机制。
1 材料与方法
1.1 实验动物和药物
6~8周龄的雄性SOD2+/-KO小鼠和正常对照小鼠,购自上海南方模式生物科技发展有限公司。APS购自上海中科院生理所。
1.2 动物分组及给药
按照随机数字表法将16只6~8周龄的雄性健康SOD2+/-KO小鼠随机分为转基因组及黄芪多糖转基因组(n = 8),将24只正常对照小鼠分为对照组、糖尿病组及黄芪多糖糖尿病组(n = 8)。以上小鼠饲养于复旦大学医学院实验动物科学部,饲养条件为恒温(23±2)℃,相对湿度(50±5)%,每日光照12 h,饲养期间所有小鼠自由摄食、饮水。糖尿病组和黄芪多糖糖尿病组给予链脲佐菌素(100 mg/kg)单次腹腔注射,其余组采用相同剂量的生理盐水进行腹腔注射。糖尿病动物模型建立成功后,给予黄芪多糖糖尿病组和黄芪多糖转基因组小鼠APS注射液[2000 mg/(kg·d)]胃管给药治疗16周,其余组给予等量生理盐水灌胃。治疗期间监测小鼠血糖、体重、血压和心率,治疗完成后处死小鼠,留取血、心脏组织。
1.3 心脏功能及血液动力学参数检测
1%戊巴比妥钠(50 mg/kg)腹腔注射麻醉小鼠,采用Vevo 2100型小动物彩色超声诊断仪,采集小鼠心脏超声图像。
1.4 心脏组织病理、超微结构观察
将一部分心肌组织制成石蜡空白片,苏木精-伊红染色,光镜下观察病理组织;另一部分制成半薄切片,電子显微镜观察心肌细胞超微结构。
1.5 心肌细胞凋亡和增殖检测
使用TUNEL细胞凋亡原位检测试剂盒对石蜡切片进行荧光染色,在荧光显微镜下观察凋亡细胞。
1.6 心肌ROS含量和SOD2酶活性检测
DHE/ET荧光定量法检测ROS含量,SODⅡ试剂盒(Calbiochem SOD Assay Kit Ⅱ)检测SOD活性。
1.7 统计学方法
采用SPSS 10.0统计软件进行分析。计量资料采用均数±标准差(x±s)表示,多组比较采用方差分析,组间两两比较采用SNK-q检验。以P < 0.05为差异有统计学意义。
2 结果
2.1 体重及血糖、糖化血红蛋白水平
与对照组比较,转基因组和黄芪多糖转基因组体重、血糖和糖化血红蛋白水平差异无统计学意义(P > 0.05)。与对照组比较,糖尿病组小鼠8、24周血糖和24周糖化血红蛋白水平明显升高,24周体重明显下降,差异有统计学意义(P < 0.05);与糖尿病组比较,黄芪多糖糖尿病组8、24周血糖、24周糖化血红蛋白水平明显降低,24周体重明显增高,差异有统计学意义(P < 0.05)。见表1。
2.2 心脏功能和血液动力学
与对照组比较,糖尿病组和转基因组小鼠的心脏重量和心脏/体重比值均明显下降(P < 0.05),而黄芪多糖治疗后,小鼠心重、心脏/体重比值均明显升高(P < 0.05)。与对照组比较,糖尿病组和转基因组小鼠血液动力学明显紊乱,其中LVEDP明显升高,LVSP、LVFS和±LVdp/dt明显下降(P < 0.05),而黄芪多糖治疗后,LVEDP明显下降,LVSP、LVFS和±LVdp/dt明显升高,差异有统计学意义(P < 0.05)。见表2、图1(封三)。
2.3 心肌病理组织及心肌超微结构
与对照组比较,糖尿病组和转基因组心肌细胞形态异常、排列和结构紊乱,线粒体破坏、心肌纤维紊乱、间质胶原纤维异常增生,富含糖原颗粒、脂滴;黄芪多糖治疗后心肌细胞形态规则、排列和结构整齐,线粒体完整、心肌纤维排列规则、间质胶原纤维减少。见图2(封三)。
2.4 心肌细胞凋亡和坏死
与对照组比较,糖尿病组和转基因组小鼠的心肌细胞凋亡和坏死程度增高(P < 0.05);黄芪多糖治疗明显抑制了心肌细胞的凋亡和坏死(P < 0.05)。见图3。
2.5 ROS产量和SOD2酶活性
与对照组比较,糖尿病组和转基因组小鼠的心肌细胞中ROS显著升高(P < 0.05),SOD2酶活性明显下降(P < 0.05);黄芪多糖治疗抑制ROS生成并上调黄SOD2酶活性(P < 0.05)。见图4(封三)。
3 讨论
糖尿病是影响人类健康的三大主要慢性病之一,目前我国成人糖尿病的患病率已经达到11.6%[1-2]。DCM是一种独立于高血压、动脉粥样硬化之外的特异性心肌病变,与糖尿病患者心血管疾病的高发病率和高病死率密切相关[3]。然而,目前国内外尚无特效药可以用于治疗DCM。因此,寻找安全有效的药物治疗以阻断或延缓DCM的发生、发展具有重要的意义。
大量研究已證实氧化应激是DCM的主要发病机制之一[4-7]。SOD是体内最重要的抗氧化应激活酶之一,可以催化超氧化物自由基[O2-]产生过氧化氢[H2O2],最后降解为H2O。SOD2是抑制心肌线粒体生成活性氧化物质的主要抗氧化应激活酶[8-10]。研究表明糖尿病鼠心肌的过度凋亡、氧化应激损伤与心肌内SOD2表达降低显著相关,而给予糖尿病鼠SOD2类似物干预治疗后或利用转基因技术在其体内过表达SOD2基因后,糖尿病鼠心肌的过度凋亡和氧化应激损伤减少,糖尿病心肌的病理和功能显著改善[8],提示调控SOD2是抑制糖尿病心肌多潜能干细胞氧化应激损伤的一个重要靶点[8-12]。
黄芪是一味传统中药,黄芪多糖是其均一多糖部分,为黄芪主要活性成分之一。本课题组的前期研究已验证[13-16],应用黄芪多糖治疗糖尿病对DCM有明确的保护作用,可以显著纠正各类糖尿病模型鼠的心脏功能障碍、血液动力学异常,改善DCM理和超微结构的异常,下调糖尿病心肌心衰因子的基因表达和蛋白含量。
本研究结果显示,黄芪多糖治疗可以纠正转基因SOD2+/-KO小鼠、糖尿病小鼠的心脏功能障碍和血液动力学紊乱,改善SOD2+/-KO小鼠、糖尿病小鼠的心肌组织结构异常和超微结构异常,提示黄芪多糖可以保护糖尿病心肌和氧化应激心肌的组织结构和心脏功能。黄芪多糖治疗抑制转基因SOD2+/-KO小鼠、链脲佐菌素诱导糖尿病小鼠的心肌细胞的凋亡和坏死程度,提示黄芪多糖可以抑制糖尿病心肌和氧化应激心肌的细胞凋亡和坏死,阻止氧化应激引发的心肌细胞凋亡和坏死。黄芪多糖治疗后,转基因SOD2+/-KO小鼠、链脲佐菌素诱导糖尿病小鼠心肌细胞的ROS含量下降,心肌SOD2酶活性明显提高,提示黄芪多糖可以抑制糖尿病心肌和氧化应激心肌的ROS生成,可能与其对心肌SOD2酶活性的调控作用相关。
综上所述,黄芪多糖通过调控SOD2表达能抑制糖尿病心肌氧化应激损伤,从而恢复心肌凋亡增殖体系平衡,阻止DCM的发生与发展。黄芪多糖对心肌SOD2的调控表达机制还有待于进一步深入研究。
[参考文献]
[1] Yang W,Lu J,Weng J,et al. Prevalence of diabetes amongmen and women in China [J]. N Engl J Med,2010,362(12):1090-1101.
[2] Mandavia H,Aroor AR,DeMarco VG,et al. Molecular and metabolic mechanisms of cardiac dysfunction in diabetes [J]. Life Sci,2013,92(11):601-608.
[3] Goyal BR,Mehta AA. Diabetic cardiomyopathy:Pathophysiological mechanisms and cardiac dysfuntion [J]. Hum Exp Toxicol,2013,32(6):571-590.
[4] Marchi ED,Baldassari F,Bononi A,et al. Oxidative stress in cardiovascular diseases and obesity:role of p66shc and protein kinase C [J]. Oxid Med Cell Longev,2013,2013:564961.
[5] Giacco F,Brownlee M. Oxidative stress and diabetic complications [J]. Circ Res,2010,107(9):1058-1070.
[6] Watanabe K,Thandavarayan RA,Harima M,et al. Role of differential signaling pathways and oxidative stress in diabetic cardiomyopathy [J]. Curr Cardiol Rev,2010,6(4):280-290.
[7] Mandavia CH,Aroor AR,DeMarco VG,et al. Molecular and metabolic mechanisms of cardiac dysfunction in diabetes [J]. Life Sci,2013,92(11):601-608.
[8] Liang LP,Waldbaum S,Rowley S,et al. Mitochondrial oxidative stress and epilepsy in SOD2 deficient mice:attenuation by a lipophilic metalloporphyrin [J]. Neurobiol Dis,2012,45(3):1068-1076.
[9] Liu C,Ogando D,Bonanno J. SOD2 contributes to anti-oxidative capacity in rabbit corneal endothelial cells [J]. Mol Vis,2011,17:2473-2481.
[10] Ramachandran A,Lebofsky M,Weinman S,et al. The impact of partial manganese superoxide dismutase(SOD2)-deficiency on mitochondrial oxidant stress,DNA fragmentation and liver injury during acetaminophen hepatoxicity [J]. Toxicol Appl Pharmacol,2011,251(3):226-233.
[11] Ascencio-Montiel Ide J,Parra EJ,Valladares-Salgado A,et al. SOD2 gene Val16Ala polymorphism is associated with macroalbuminuria in Mexican type 2 diabetes patients:a comparative study and meta-analysis [J]. BMC Med Genet,2013,14:110-121.
[12] Du K,Yu Y,Zhang D,et al. NFκB1(p50)suppresses SOD2 expression by inhibiting FoxO3a transactivation in a miR190/PHLPP1/Akt-dependent axis [J]. Mol Biol Cell,2013,24(22):3577-3583.
[13] Chen W,Li YM,Yu MH. Astragalus Polysaccharides:An Effective Treatment for Diabetes Prevention in NOD Mice [J]. Exp Clin Endocr Diab,2008,116(8):468-474.
[14] Chen W,Li YM,Yu MH. Astragalus polysaccharides inhibited diabetic cardiomyopath in hamsters depending on supression of heart chymase activation [J]. J Diabetes Complicat,2010,24(3):199-208.
[15] Chen W,Xia YP,Chen WJ,et al. Improvement of myocardial glycolipid metabolic disorder in diabetic hamster with Astragalus polysaccharides treatment [J]. Mol Biol Rep,2012,39(7):7609-7615.
[16] Chen W,Chen WJ,Xia YP,et al. Therapy with Astragalus polysaccharides rescues lipotoxic cardiomyopathy in MHC-PPARa mice [J]. Mol Biol Rep,2013,40(3):2449-2459.
(收稿日期:2017-09-04 本文編辑:张瑜杰)