WRKY转录因子在植物胁迫应答中的功能
2018-05-14李瑶潘福鑫王雷吴琼曹涤非宋睿黄国庆薛佳莹孙尧
李瑶 潘福鑫 王雷 吴琼 曹涤非 宋睿 黄国庆 薛佳莹 孙尧
摘要 阐述了WRKY转录因子的结构及分类,综述了近年来WRKY转录因子在植物胁迫应答中的功能的研究进展,并分析了目前WRKY转录因子研究存在的问题和今后的发展方向,为WRKY转录因子的研究提供参考。
关键词 WRKY转录因子;胁迫应答;功能
中图分类号 S188 文献标识码
A 文章编号 0517-6611(2018)14-0024-03
Function of WRKY Transcription Factors in Plant Stress Response
LI Yao1,PAN Fuxin2,WANG Lei1 et al
(1.Institute of Advanced Technology,Heilongjiang Academy of Sciences,Harbin,Heilongjiang 150000; 2.Teaching and Experimental Equipment Guidance Center of Heilongjiang,Harbin,Heilongjiang 150000)
Abstract We expounded the structure and classification of WRKY transcription factor,summarized WRKY transcription factor in recent years in the research of plant stress response function,and analyzed the existing problems in the research of transcription factor WRKY and the future direction of development,so as to provide reference for the study of transcription factor WRKY.
Key words WRKY transcription factor;Stress response;Function
植物在进化过程中形成了一系列机制来适应和抵御各种逆境胁迫。植物受到胁迫时,胞外信号通过信号转导进入胞内,激活转录因子与下游靶基因结合,在转录水平上促进基因表达,从而响应植物的应答反应[1]。WRKY转录因子是高等植物中特有的一种锌指型转录因子,参与植物的胁迫反应、叶片衰老和发育等各种生理过程。目前,研究者已先后在拟南芥[2] (Arabidopsis thalilana)、水稻[3] (Oryza sativa)、杨树[4] (Populus trichocarpa)、番茄[5] 等植物中发现了WRKY转录因子。笔者综述了WRKY转录因子对胁迫应答等方面的调控研究进展,以期为WRKY转录因子的研究奠定基础。
1 WRKY转录因子的结构与分类
转录因子结构包含不同的区域:DNA结合域、转录激活域以及连接区。WRKY转录因子拥有由高度保守的60个氨基酸构成的WRKY结构域,该结构域N端含有高度保守的WRKYGQK氨基酸序列,C端则有1个锌指结构[6]。
根据不同的WRKY结构域数量及锌指结构的特点,WRKY转录因子家族一般被分为3类。第1类通常含有2个WRKY结构域和1个C2H2锌指结构,如WRKY蛋白ABF1、SPF1等。第2类和第3类WRKY蛋白只包含有1个WRKY结构域,不同的是,第2类WRKY蛋白的锌指结构为C2H2,第3类的锌指结构为C2HC。据报道,目前发现的WRKY蛋白大多属于第2类[7]。
2 WRKY转录因子在胁迫应答中的功能
2.1 生物胁迫 目前已经发现的很大一部分的WRKY转录因子都参与了植物对生物胁迫的反应过程。WRKY转录因子能够在植物多种免疫系统中发挥调控的作用,而且对病原物的响应范围较广,是植物响应生物胁迫的重要转录因子家族[8]。例如,拟南芥AtWEKY33对植物抗毒素的合成起调控作用,并能够调控某些抗病基因的表达[9]。Choi 等[10]发现,OsWRKY6基因的过量表达能够使水稻表现出对病原物更强的抗性。研究还发现,在OsWRKY6基因过表达的水稻株系中,水杨酸的浓度和异分支算合成酶1的转录水平都要高于野生型。异分支算合成酶是水杨酸生物合成过程中的主要酶,表明OsWRKY6可以调控异分支算合成酶的表达从而调节水杨酸的浓度,进行自我调节。表1为部分抗病相关的WRKY转录因子。
此外,植物被昆虫取食之后,WRKY转录因子的表达水平也会发生变化。Lu等[11]研究发现剥离螟虫取食能够诱导水稻中OsWRKY53和OsWRKY70的表达,表明在植物应答昆虫取食的防卫过程中可能有WRKY转录因子家族的某些成员的参与;Li等[12]将菊花中的CmWRKY48过量表达,结果抑制了蚜虫群体数量的正常,据此推断CmWRKY48参与调控植物对蚜虫的防御机制。表2为部分虫害相关的WRKY转录因子。
2.2 非生物脅迫 植物在生长过程中要不断适应外界变化的环境。在逆境胁迫下,植物的生理生化过程会发生变化,其中,WRKY转录因子起到了一定的调控作用。研究表明,WRKY转录因子参与了许多非生物逆境如干旱、高温、低温等的应答反应[6]。例如,杨树的WRKY转录因子家族中,有61个转录因子参与植株的非生物胁迫调控[19];Okay等[20]研究表明,在干旱胁迫的条件下,小麦中的TaWRKY16、TaWRKY24、TaWRKY59和TaWRKY61表达水平会迅速上升,据此推断这几种WRKY转录因子参与了应答干旱胁迫的过程。Ramamoorthy等[21]对水稻103个WRKY转录因子在非生物胁迫的表达谱进行分析,发现有54个WRKY转录因子被诱导表达。同时,他们还发现有些WRKY转录因子受一种胁迫因子的诱导,而有的WRKY转录因子受几种胁迫因子的诱导,表明这些WRKY转录因子在响应胁迫的过程中有一定的特异性。表3为部分非生物胁迫相关的WRKY转录因子。
3 展望
作為植物所特有的转录因子,WRKY转录因子与植物的生长发育及抗逆性密切相关,近年来,许多研究者开始利用基因组学、转录谱、基因工程以及生物信息学等方法进行WRKY转录因子的研究。由于WRKY转录因子在胁迫中所表现的调控作用,可以通过基因工程的方法改变WRKY转录因子的表达,进而提高植株的抗病性、抗虫性、耐旱性和耐寒性等。但目前仍存在一些问题,WRKY基因功能存在冗余性和转录因子的多功能性,为有效利用这些基因设置了一定的障碍。若想有效利用WRKY转录因子,就要充分了解WRKY转录因子的调控机制以及各转录因子之间的相互调控网络等,对利用WRKY转录因子筛选抗逆植株品种以及提高植株的抗逆性做进一步研究。
参考文献
[1]
王娜,张振葆,黄凤珠,等.WRKY转录因子参与植物非生物胁迫应答的研究进展[J].核农学报,2014,28(10):1819-1827.
[2] YU D Q,CHEN C H,CHEN Z X.Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression[J].The Plant Cell,2001,13(7):1527-1539.
[3] ABBRUSCATO P,NEPUSZ T,MIZZI L,et al.OsWRKY22,a monocot WRKY gene,plays a role in the resistance response to blast[J].Mol Plant Pathol,2012,13(8):828-841.
[4] KARIM A,JIANG Y,GUO L,et al.Isolation and characterization of a subgroup Iia Wrky transcription factor Ptrwrky40 from Populus trechocarpa[J].Tree Physiol,2015,35(10):1129-1139.
[5] LIU B,HONG Y B,ZHANG Y F,et al.Tomato WRKYtranscriptional factor SIDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress[J].Plant Sci,2014,227:145-156.
[6] 文锋,吴小祝,廖亮,等.WRKY转录因子在植物抗逆生理中的研究进展[J].广西植物,2017,37(1):69-79.
[7] 史书婷,龚小庆,邹养军.WRKY转录因子与植物逆境响应[J].中国生物化学与分子生物学报,2017,33(7):674-680.
[8] 程远,姚祝平,阮美颖,等.WRKY转录因子在植物逆境应答中的功能[J].分子植物育种,2016,14(11):3214-3223.
[9] MAO G H,MENG X Z,LIU Y D,et al.Phosphorylation of a WRKY transcription factor by two pathogenresponsive MAPKs drivers phytoalexin biosynthesis in Arabidopsis[J].Plant Cell,2011,23(4):1639-1653.
[10] CHOI C,HWANG S H,FANG I R,et al.Molecular characterization of Oryza Sativa WRKY6,which binds to Wboxlike element 1 of the Oryza sativa pathogensisrelated(PR) 10a promoter and confers reduced susceptibility to pathogens[J].New Phytol,2015,208(3):846-859.
[11] LU J,JU H P,ZHOU G X,et al.An EARmotifcontaining ERF transcription factor affects herbivoreinduced signaling,defense and resistance in rice[J].Plant J,2011,68(4):583-596.
[12] LI P L,SONG A P,GAO C Y,et al.The overexpression of a chrysanthemum WRKY transcription factor enhances aphid resistance[J].Plant Physiol Biochem,2015,95:26-34.
[13] YU F F,HUAXIA Y F,LU W J,et al.GhWRKY15,a member of the WRKY transcription factor family identified from cotton(Gossypium hirsutum L.),is involved in disease resistance and plant development[J].BMC Plant Biol,2012,12:144.
[14] LIU X F,SONG Y Z,XING F Y,et al.Ghwrky25,a group Ⅰ Wrky gene from cotton,confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana[J].Protoplasma,2016,253(5):1265-1281.
[15] KUSNIERCZYK A,WINGE P,JORSTAD T S,et al.Towards global understanding of plant defence against aphidstiming and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack[J].Plant Cell Environ,2008,31(8):1097-1115.
[16] HUI D,IQBAL J,LEHMANN K,et al.Molecular interactions between the specialist herbivore Manduca sexta(Lepidoptera,Sphingidae) and its natural host Nicotiana attenuate:V.Microarray analysis and further characterization of largescale changes in herbivoreinduced mRNAs[J].Plant Physiol,2003,131:1877-1893.
[17] WANG H H,HAO J J,CHEN X J,et al.Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plant[J].Plant Mol Biol,2007,65(6):799-815.
[18] ATAMIAN H S,EULGEM T,KALOSHIAN I.SlWRKY70 is required for Mi1mediated resistance to aphids and nematodes in tomato[J].Planta,2012,235(2):299-309.
[19] JIANG Y Z,DUAN Y J,YIN J,et al.Genomewide identification and characterization of the populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic streeses[J].J Exp Bot,2014,65(22):6629-6644.
[20] OKAY S,DERELLI E,UNVER T.Transcriptomewide identification of bread wheat WRKY transcription factors in response to drought stress[J].Mol Genet Genom,2014,289(5):765-781.
[21] RAMAMOORTHY T,JIANG S Y,KUMAR N,et al.A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments[J].Plant Cell Physiol,2008,49(6):865-879.
[22] SUZUKI N,RIZHSKY L,LIANG H J,et al.Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c[J].Plant Physiol,2005,139:1313-1322.
[23] JIANG Y J,LIANG G,YU D Q.Activated expression of WRKY57 confers drought tolerance in Arabidopsis[J].Mol Plant,2012,5(6):1375-1388.
[24] LI P L,SONG A P,GAO C Y,et al.Chrysanthemum WRKY gene CmWRKY 17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants[J].2015,34(8):1365-1378.
[25] SHI W N,HAO L L,LI J,et al.The Gossypium hirsutum WRKY gene GhWRKY391 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana[J].Plant Cell Rep,2014,33(3):483-498.
[26] ZHOU Q Y,TIAN A G,ZOU H F,et al.Soybean WRKYtype transcription factor genes,GmWRKY13、GmWRKY21 and GmWRKY54,confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J].Plant Biotechnol J,2008,6:486-503.
[27] NURUZZAMAN M,CAO H Z,XIU H,et al.Transcriptomicsbased identification of WRKY gene and characterization of a salt and Hormoneresponsive Pgwrky1 gene in panax ginseng[J].Acta Biochim Biophys Sin,2016,48(2):117-131.
[28] WANG X T,ZENG J,LI Y,et al.Expression of TaWRKY44,a wheat WRKY gene,in transgenic tobacco confers multiple abiotic stress tolerances[J].Front Plant Sci,2015,6:615.