钢桥面铺装车辙预估有限元分析
2018-05-14马雪城李国芬赵康
马雪城 李国芬 赵康
摘 要:为得到荷位、轴载、大气温度以及计算方法各因素对钢桥面铺装车辙的影响,本文以上层高弹改性沥青混合料(35 mm)+下层浇筑式沥青混合料(40 mm)复合铺装结构为研究对象,并建立钢桥面铺装模型,通过单轴贯入试验获取材料的蠕变参数,利用ABAQUS计算钢桥面铺装车辙。分析表明:车辙主要发生在下层的浇筑式沥青混合料;横向荷位变化对车辙的影响远大于纵向荷位;车辙值总体与温度呈正相关性,与季节的温度变化相一致;连续变温下铺装车辙的计算方法比恒温下的要准确,车辙深度随着接地压力的增加而不断增大。研究结论对钢桥面铺装设计和车辙预估有一定的意义。
关键词:车辙;蠕变试验;钢桥面铺装;有限元
中图分类号:U443.33 文献标识码:A 文章编号:1006-8023(2018)05-0077-06
Abstract: In order to get the influence of load location, axle load, atmospheric temperature and calculation method on rutting of steel bridge deck pavement. The composite pavement structure of high elastic modified asphalt mixture (35mm) and under layer pouring asphalt mixture (40mm) as research object in this paper, and a steel bridge deck pavement model was established, through a single axis penetration test to obtain the material creep Variable parameters, using ABAQUS to calculate the steel deck pavement. The analysis shows that rutting mainly occurs in the under layer of asphalt mixture; the effect of lateral load change on the rutting is much greater than that of the longitudinal load; the rutting value is positively correlated with temperature, which is consistent with seasonal temperature change; the calculation method of the pavement at the continuous temperature change is more accurate than at the constant temperature, and the depth of the rut increases with the increase of the ground pressure. The research conclusion is of significance for the design and rutting prediction of steel bridge deck pavement.
Keywords: Rutting; creep test; steel bridge deck pavement; finite element
0 引言
目前我国多数大跨径钢桥面铺装出现了不同程度的破坏,其中车辙病害日益严重,大大降低了钢桥面铺装的使用性能[1-2],因而需要对车辙进行深入研究分析。课题组对比分析了基于浇筑式沥青混合料的复合铺装结构高温性能[3],并基于修正Burgers模型进行了车辙预估分析[4-6]。汤文[7]采用多参数得到车辙预估模型,杨军、钱振东[8-10]等采用Bailey-Norton模型,龙尧[11]采用Burgers模型,Al-Qadi I L[12]采用广义的Maxwell模型对混凝土材料参数进行获取并进行车辙预估,但是未对连续变温下的铺装进行准确考虑,本文以南京长江四桥的铺装为分析对象,通过ABAQUS建立局部箱梁模型,通过不同的荷位、温度等因素对车辙的影响分析。
1 钢桥面铺装分析模型
1.1 有限元模型参数
本文采取的计算模型具体参数参照南京长江四桥,见表1。铺装为两层结构,上层高弹改性沥青混合料(35 mm)+下层浇筑式沥青混合料(40 mm),有限元模型如图1所示。
1.2 材料参数
混合料的蠕变模型采用Bailey-Norton[13-14]模型,其表达式为:
式中:为应变速率;σ为应力;t 为荷载累计作用时间;A、m、n为系数,主要与温度和应力大小有关。
为了使获得的参数更接近钢桥面铺装的真实受力状态,实验制作300 mm×300 mm×50 mm的标准车辙板试件,分别为高弹改性沥青混合料试件和浇筑式沥青混合料试件,共有4种温度水平,分别为30、40、50、60℃,每种温度水平共用3组试件,对混合料的蠕变参数分别拟合,拟合结果见表2。
1.3 荷载参数
根据李凌林[15-18]等研究,轮胎接地压力与轮胎的内压处于不平衡的关系,参照经验公式计算不同轴载作用下的接地压力,公式如下:
p=0.290×pt+0.0042×P+0.1448。 (2)
式中:p為轮胎接地压力,MPa;Pt为轮胎充气压力,MPa;P为轴载,kN。
[2]杨若冲,程刚.钢桥面铺装车辙破坏机理及成因分析[J].公路,2004(3):52-55.
YANG R C, CHENG G. Mechanism of rutting breakage and analysis of formation causes on steel bridge flooring[J]. Highway, 2004(3):52-55.
[3]侍冬前,李国芬,王宏畅,等.复合浇注式沥青混凝土高温性能分析[J].公路工程,2014,39(5):75-77.
SHI D R, LI G F, WANG H C, et al. Study on high temperature stability composite gussasphalt concrete[J]. Highway Engineering, 2014, 39(5):75-77.
[4]李国芬,王宏畅,王勇,等.基于修正Burgers模型的钢桥面铺装车辙有限元分析[J].林业工程学报,2016,1(5):120-125.
LI G F, WANG H C, WANG Y,et al. Finite element analysis of steel bridge deck pavement rut[J]. Journal of Forestry Engineering, 2016, 1(5):120-125.
[5]马雪城,王宏畅,魏洋等.基于连续变温下钢桥面铺装结构的力学性能研究[J].中外公路,2017,37(5):135-140.
MA X C, WANG H C, WEI Y, et al.Research on mechanical properties of steel deck pavement structure under consecutive temperature variation[J]. Journal of China & Foreign Highway, 2017,37(5):135-140.
[6]赵毅,郭志敏,梁乃兴.沥青混合料永久变形黏弹性力学模型通用性研究[J].公路工程,2018,43(2):192-196.
ZHAO Y, GUO Z M, LIANG N X. Study on the universality of permanent deformation viscoelastic mechanics model of asphalt mixture[J].Highway Engineering,2018,43(2):192-196.
[7]汤文,吴学文,孙立军.沥青路面车辙的多参数预估模型研究[J].中外公路,2016,36(1):45-49
TANG W, WU X W, SUN L J. Research on multi-parameter prediction model of asphalt pavement rutting[J]. Journal of China & Foreign Highway, 2016,36(1):45-49.
[8]楊军, 丛菱, 朱浩然,等. 钢桥面沥青混合料铺装车辙有限元分析[J]. 工程力学, 2009, 26(5):110-115.
YANG J, CONG L, ZHU H R, et al. Analysis on rutting potential of asphalt pavement on the steel deck by finite element method[J]. Engineering Mechanics, 2009, 26(5):110-115.
[9]胡靖,钱振东,杨宇明.GA+EA钢桥面铺装复合结构的高温性能与力学特性[J].中南大学学报(自然科学版),2015,46(5):1946-1952.
HU J, QIAN Z D, YANG Y M. High temperature properties of composite structure of gussasphalt epoxy asphalt at bridge deck pavement[J]. Journal of Central South University (Natural Science), 2015,46(5):1946-1952.
[10]黄菲.沥青路面永久变形数值模拟及车辙预估[D].南京:东南大学,2006.
HUANG F. Numerical simulation of road surface deformation and rutting prediction[D]. Nanjing: Southeast University, 2006.
[11]龙尧, 谢晶, 王德群,等. 基于Burgers模型的沥青混合料室内车辙试验粘弹性分析[J]. 中外公路, 2011, 31(5):239-242.
LONG X, XIE J, WANG D Q, et al. Viscous and elastic analysis of asphalt concrete indoor rutting test based on burgers model[J]. Journal of China & Foreign Highway, 2011, 31(5):239-242.
[12]AL-QADI I L, ELSEIFI M A. Viscoelastic modeling and field validation of flexible pavements[J]. Journal of Engineering Mechanics, 2006, 132(2):172-178.
[13]HUANG H M. Analysis of accelerated pavement tests and finite element modeling of rutting phenomenon[D]. West Lafayette: Purdue University, 1995.
[14]FWA T F, TAN S A, ZHU L Y. Rutting prediction of asphalt pavement layer using C–φ model[J]. Journal of Transportation Engineering, 2004, 130(5):675-683.
[15]李凌林. 沥青路面长大纵坡段车辙性能研究[D]. 南京:东南大学, 2008.
LI L L. Research on rutting resistance of the long and steep slope asphalt pavements[D]. Nanjing: Southeast University, 2008.
[16]呂悦晶,应保胜,邹丽琼, 等.随机荷载作用下沥青路面应力应变分析[J].公路工程,2018,43(1):94-101.
LV Y J, YING B S, ZOU LQ, et al. Stress and strain analysis of asphalt pavement under random load[J].Highway Engineering,2018,43(1):94-101.
[17]胡小弟, 孙立军. 轻型货车轮胎接地压力分布实测[J]. 公路交通科技, 2005, 22(8):1-7.
HU X D, SUN L J. Measuring tire contact pressure distribution of light vehicle[J]. Journal of Highway and Transportation Research and Development, 2005, 22(8):1-7.
[18]李婷. 载重汽车轮胎接地压力研究[D]. 西安:长安大学, 2013.
LI T. Study on the tire contact pressure of heavy truck[D]. Xian: Changan University, 2013.
[19]胡小弟,孙立军.重型货车轮胎接地压力分布实测[J].同济大学学报(自然科学版),2005,33(11):1443-1448.
HU X D, SUN L J. Measuring tire ground pressure distribution of heavy vehicle[J]. Journal of Tongji University (Natural Science), 2005, 33(11):1443-1448.