APP下载

化学工艺流程在放射性废水处理中的应用

2018-04-26刘俊

科学与财富 2018年6期
关键词:工艺流程应用

刘俊

摘要: 近年来,我们研制了YM型磺化聚砜超滤膜,并做了超滤膜处理放射性废水的探索试验。对反渗透处理放射性废水的方法也作了研究。在此基础上,综合各种处理手段的优点,提出了用超滤(UF)- 反渗透(RO)- 电渗析(ED)组合的化学工艺流程(简称 URE 流程)处理低水平放射性废水的新工艺。为放射性废水的处理提供了一种新的方法。

关键词: 工艺流程;放射性废水;应用

1引言

曾在70年代起就流行了“四台电渗析器”和“电渗析器- 填充床电渗析器”两个工艺流程来处理放射性废水,获得了成功。但也发现在处理放化实验室排除的放射性废水时,效果不理想。主要是该废水中,组分复杂,特别是含有的有机大分子、络合物等,很难用电渗析工艺去除,影响了净化效果。

2 工艺流程与设备

处理低放废水URE流程采用 YM型内压管式超滤器(磺化聚砜超滤膜,截留分子量为2万),膜面积1.5m2,纯水通量250L/h,(压力0.25MPa)。反渗透器为海洋二所研制的HRC型中空纤维组件,膜面积40m2,纯水通量 270L/h(压力 1.3MPa)。电渗析器为 400mm×800mm,一级一段,膜对40对,由本实验室进行组装。放化实验室排出的低放废水进入沉降槽,静止澄清24h后,上清液放入超滤原水槽,经超滤处理后,渗透液进入中间槽。同时启动反渗透器和电渗析器,反渗透器进一步脱盐和去污,渗透液可直接排放或流入混床进一步处理。电渗析起浓缩作用。超滤和电渗析处理的最终浓缩液留待固化处理。三个单元均采用循环式操作。

3 全流程冷试验运行

冷试验累计运行147.5h,共处理模拟废水14m3。模拟废水按实际放射性废水组份配制,具体配方为:Na HCO3,60mg/L,Na NO3,146mg/L;NaCl,128mg/L;Ca Cl2,88mg/L;Mg Cl2,71mg/L;Na2SO4,7mg/L;30%TBP-煤油,50mg/L;机油 50mg/L,洗涤剂,50mg/L。

3.1 超滤单元

在URE流程中,UF作为预处理除去大部分有机物和大分子物质,以保证RO的进水要求,提高ED的浓缩效果。

(1)脱盐效果。与普通超滤膜不同,由于磺化聚砜超濾膜是荷电的,因而具有一定的脱盐能力。但脱盐率随原水中含盐量的增加和p H值的下降而降低。

(2)影响通量的因素。原水的组成、浓度和温度都影响UF的通量。当原水不含有机物(指没有加入机油、洗涤剂等)和含有机物时的通量分别为73.87L/m2h和58.30L/m2h。此外随着料液浓度的提高,通量逐渐下降。而随着料液温度的提高,通量逐渐增加。

(3)浊度和化学耗氧量的变化。经超滤后,废水的浊度大大下降,确保了反渗透的进水要求。废水COD值下降表明,大部分有机物已被去除,使下游工艺处理更易进行。

(4)膜的清洗方法试验。随着运行时间的延长,超滤通量逐渐下降,试验用化学清洗法、海面球机械清洗法及其结合的方法来清洗,以恢复通量采用化学清洗法可较好地恢复通量,但再次运行时通量衰减较快,且有两次废液产生。而海面球机械清洗时,只要将球洗阀门旋转180°,使存放于阀门内的海面球随料液进入管膜内,海面球擦洗膜面后又回归入球阀内待用。

3.2 反渗透单元

在URE流程中,RO用作深度净化。试验中对RO在工艺流程中的位置及其他影响因素作了探索。

(1)反渗透在URE流程中的位置。在起初的设想中,URE流程为:UF- RO- ED,废水经超滤处理后,进入反渗透,由反渗透脱盐并浓缩2倍后,再由电渗析作进一步浓缩。但试验发现,当反渗透的进料液含盐量由于浓缩而增加时,其脱盐率下降,渗透液的含盐量也提高,加重了尾端处理的负担。为更好地发挥反渗透的作用,将其位置改为:UF- ED- RO,即经超滤处理后的料液先由电渗析脱盐,使料液含盐量降至500mg/L时,再由反渗透作进一步脱盐,经试验改动后,反渗透的脱盐率可稳定在85%。

(2)通量变化。在起始的40h运行中,RO的通量从141L/h降至112L/h(1.3MPa),但在以后的100多小时运行中通量基本保持稳定,不再下降。可以认为由于采用UF作为预处理手段,RO膜受污染的程度大大降低。初始阶段的通量下降是由于膜的压密效应引起的。

3.3 电渗析和离子交换单元

电渗析和离子交换在 URE 流程中主要分别作为浓缩和后级深度净化。

4 放射性废水处理试验

在全工艺流程冷试验运行的基础上,进行了低放废水的处理试验。低放废水来自本所放化实验室实际污水,废水比放为7.4k Bq/L,核素主要90Sr- 90Y和 137Cs,废水含盐量为800mg/L,为进一步验证膜对有机物的去除能力,仍向废水中加入与冷试验时相同的有机组份。热试验总计运行了104.5h,处理放射性废水7.5m3。试验中对反渗透单元的进水浓度对脱盐、去污的影响作了进一步测定,对高价离子的去除情况也作了分析。

4.1 原水含盐量对反渗透单元去污率的影响

同冷试验结果相同,当原水含盐量较高时,RO脱盐率下降,去污率也下降。通过先启动ED,使RO的进料液含盐量保持在500mg/L左右时,RO脱盐率可达90%以上,去污率也提高到95%以上。

4.2 对高价离子的去除效果

热试验中测定了UF和RO对废水中Ca2+、Fe3+离子的去除率。结果表明:UF和RO对二价离子的去除率都高于对混合离子的去除效果。对价态较复杂、价态较高的铁离子的去除率接近100%,试验结果表明了膜分离方法去除高价的复杂离子是极为有效的。

4.3 全流程去污效果

全流程热试运行中,用β- 弱放射性测量装置测定总β,HP-Ge探头S- 85多道分析器系统测总γ,每2h取样测量一次,URE流程的去污效果及用热释光方法测定 3H 的情况试验的结果表明:放射性的去除主要依靠反渗透(总β和总γ的去污率分别为95.0%和93.7%)。该流程对3H 无去除效果。表中最高剂量积累是在超滤和反渗透装置的一固定区域内,定时用β- γ辐射仪检测其放射性强度,发现热试期间最高剂量始终没有超过7.74×10-6c/kg,表明超滤器和反渗透器不会引起剂量积累。

4.4 全流程评价

根据全流程的冷、热试验结果,对URE流程作出如下评价:

(1)超滤工艺取代了原流程中的凝聚沉降,减少了固体废物的处置设备,废水体积减缩比高,运行稳定,操作方便。超滤对废水中有机物去除效果明显,出水浊度低,满足了反渗透的进水要求,改善了下游工艺的净化效果。采用海棉球机械清洗的方法,可适当恢复其通量,清洗时不影响生产,不产生两次废液。

(2)反渗透代替电渗析和填充床电渗析淡化效果显著。在实际使用中反渗透的安装和运行要比电渗析或填充床电渗析简便得多。反渗透既可除去离子,也可除去复杂的大分子等物质,使净化效果提高。

5 结 论

本文通过化学工艺流程实验,叙述了内压管式超滤器、中空纤维反渗透器及电渗析器在废水处理中的脱盐、去污等效果,及两种清洗方法对超滤膜通量恢复的比较等。由“三膜”组合工艺组成的 URE 流程去污因子高达 3.2×103,为生活及工程中处理放射性废水提供了一种新的科学方法。可供同行水质研究人员参考。

参考文献:

[1]简华,戴德敏.海水淡化的热处理工艺技术综述[J].天津化工,2015,19(1):13-15 .

[2]杨庆,侯立安,王佑君.中低水平放射性废水处理技术研究进展[J].环境科学与管理,2017,32(9):103-108 .

猜你喜欢

工艺流程应用
化工工艺流程题中常涉及的考点
“四步”解答中学化学工艺流程题
多媒体技术在小学语文教学中的应用研究
分析膜技术及其在电厂水处理中的应用
GM(1,1)白化微分优化方程预测模型建模过程应用分析
煤矿井下坑道钻机人机工程学应用分析
气体分离提纯应用变压吸附技术的分析
会计与统计的比较研究
蒽油加氢技术工艺流程简介
化学工艺流程题:从相识到相知