APP下载

植物表皮形态建成的分子调控机制

2018-01-29周玉乾孟思远周文期甘肃省农业科学院作物研究所兰州730070甘肃省种子管理局兰州73000

西北农业学报 2018年5期
关键词:扁平复合体拟南芥

周玉乾,孟思远,周文期(.甘肃省农业科学院 作物研究所,兰州 730070; .甘肃省种子管理局,兰州 73000)

植物表皮在组织器官的生长发育和形态建成中发挥非常重要的作用[1-3]。表皮是植物体内与外界环境的天然保护屏障,它不仅可以感知外界刺激、传递信号,吸收营养等,而且表皮细胞外壁常覆盖一层脂肪性物质,称角质层,在植物的地上器官(如茎、叶、花、果实和种子)中具有保护功能[4-6]。增加表皮层厚度不仅能使植物有效地抵御外界有机胁迫(微生物、病虫害侵袭)和无机胁迫(低温、高盐碱等),更能减少植物体内热量及水分的散失[7];在地下器官(根)中具有吸收功能。因此,研究植物表皮的分裂、分化与形态建成对植物的正常生长发育具有非常重要的理论意义。植物叶表皮扁平细胞排列紧密,细胞边缘凸凹嵌套,没有细胞间隙(除了气孔)。除一般的表皮扁平细胞外,叶表皮细胞还包括特化的气孔复合体和表皮毛等附属物,在禾本科植物叶中还包括泡状细胞、以及由硅质细胞和栓质细胞紧密镶嵌而成的短细胞[8-10]。近几年来,随着生物技术的不断提高,对植物表皮形态建成的研究成为一大热点,尤其在双子叶模式植物拟南芥中,取得了一系列的研究成果,但是在单子叶植物中,调控气孔及表皮细胞发育图式的基因及参与分子调控网络的机理研究非常受限,因此需要更多科技工作者去深入探讨和研究。

1 双子叶植物叶表皮扁平细胞及表皮毛形态建成及分子机制

植物表皮主要作用是增加表皮层的厚度,减少热量及水分散失,从而保护表皮层下组织,以免受到病虫侵害及机械伤害[7]。拟南芥(Arabidopsisthaliana) 作为一种双子叶植物的模式植物,对其叶表皮的研究已经取得很大的进展。研究证明,拟南芥叶表皮扁平细胞的发育经历3个阶段:第1阶段,表皮原始细胞先沿着叶长轴开始扩展,形成稍微变长的多变形细胞;其次,沿细胞壁的背斜面向邻近细胞侧面延伸,细胞边缘逐渐形成不规则的锯齿状凸出(lobe);最后,细胞凸出进一步向外延伸,与相邻细胞狭窄的凹陷(neck) 处交错相连,最终形成复杂多变的表皮图式[11]。拟南芥表皮毛是一种特化的、典型的单细胞结构,一般有3个分支,无腺体,广泛分布于叶、茎、花瓣的表面。其发育过程包括起始发育、分支、延伸和形态建成4 个阶段[12]。叶表皮不规则的齿状凸出和颈的形成以及表皮毛的延伸与发育主要受细胞骨架(微管,微丝和中间纤维)的调控。微管主要调控叶扁平细胞延伸与分裂[1,13]。微管结合蛋白MAP65(microtubule associated protein 65) 负责微管稳定以及微管成束[14];微管切割蛋白KTN1(katanin 1) 与植物中的小G蛋白ROPs(rho-like small GTPase in plant) 的效应蛋白RIC1(ROP-interactive CRIB motif-containing protein 1)结合,通过切割微管进而调控微管的分布[15];Rho-GTPase级联信号通路能调控微管与微丝的排列,从而导致叶扁平细胞形态改变[11,16]。微丝主要控制表皮细胞边缘的凸出,即lobe的形成和图式发育[2,11,17-18]。微丝结合蛋白ABPs(Actin binding proteins) 调节微丝的聚合以及微丝动态装配[19];目前已被证实的拟南芥中微丝结合蛋白主要包括:微丝解聚因子(actin-depolymerizing factors)、前纤维蛋白(profilin)、肌动蛋白(fimbrins)、绒毛蛋白(villin)、肌动蛋白相关蛋白Arp2/3(actin-related protein 2/3) 复合体等都参与细胞的形态发生[20-21]。

在拟南芥中已经证明参与调控扁平细胞及表皮毛发育有多条信号通路,表皮毛的形态和发育的调控均依赖相关基因的精确表达,其中大部分属于R2R3类型的MYB、bHLH(basic helix-loop-helix)和含WD40重复序列的TTG(RANSPARENTTESTA GLABRA1) 类转录因子,表皮毛发育及分子调控目前研究比较清晰[22-28]。本研究就针对依赖于SPK1-ROPs-SCAR/WAVE-ARP2/3这一信号通路进行介绍,该通路基因通过调控微丝核化改变细胞骨架结构,从而导致叶扁平细胞及表皮毛发育过程形态异常,该通路成员有SPK1(spike 1),ROPs,环磷酸腺苷受体结合抑制因子SCAR/WAVE(suppressor of cAMP receptor/ Wiskott-Aldrich syndrome protein-family verprolin-homologous protein) 复合体,ARP2/3复合体[22,29-30]。单突变体spk1表皮毛分支明显减少,不规则,扭曲延伸,扁平细胞边缘凸出减少[3,31]。ROP家族在拟南芥中共有11个成员,分别是ROP1~ROP11,其中ROP1~ROP6主要调控细胞极性生长,参与叶表皮细胞形态建成,组成激活突变体CA-rop2扁平细胞显著膨大,非极性分裂生长,表皮毛表现出肿胀表型,分枝不规则,扭曲;而负显性突变体DN-rop2扁平细胞狭窄,lobe变短[32]。ROP2/4在扁平细胞lobe顶端质膜上激活,促进RIC4-依赖的皮层微丝积累,促进了细胞向外凸出生长,控制微丝聚集,而ROP6在neck区域与RIC1结合促进微管的装配,进而抑制细胞凸出形成[11]。ROPs信号分子在该通路中起“开关”作用,另一通路就是激活下游SCAR/WAVE复合体,继续信号传递[33-34]。SCAR/WAVE 复合体共包括5个亚基,分别是PIR/SRA1(PIROGI/Specifically Rac1-associated protein)NAP1/NAP125(NCK-associated protein),BRICK1/HSPC300(haematopoietic stem progenitor cell 300),ABI(abl-interactor 2) 和 SCAR/WAVE[35-37]。研究证明,该复合体中PIR/SRA1亚基接收上游ROPs的激活信号,SCAR/WAVE亚基与下游ARP2/3复合体直接相互作用并激活下游信号通路[36-40]。该复合体中单突变体pir1、nap1、brk1、wave1等都呈现出表皮毛扭曲,分枝不规则表型,并且细胞粘连处有缺口,细胞排列不紧密,brk1扁平细胞边缘突出变平滑的表型更为明显[21,37,41-42]。Arp2/3复合体由7个亚基构成,分别是ARP2、ARP3、ARPC1-ARPC5[43-44]。4种称为“变形(distorted)”基因分别编码ARP2、ARP3、ARPC2以及ARPC5,单个基因突变同样表现出表皮毛扭曲、肿胀,分枝缭乱,长度减少等表型[45-47]。大量试验证明编码该信号通路的蛋白功能相对保守,SCAR/WAVE和ARP2/3复合体主要通过调节微丝斑或微丝带的形成来调控细胞极性生长过程,从而改变叶扁平细胞以及表皮毛的形状[36,48]。目前双子叶植物中,对通过微管和微丝调控拟南芥表皮细胞的图式发育和形态建成的信号通路研究取得较大的成果。

2 双子叶植物中气孔的图式发育及分子机制

气孔是高等植物表皮上的一种特化结构,是蒸腾过程中水蒸气从体内排到体外的主要出口,也是光合作用和呼吸作用与外界气体交换的“大门”,对植物的蒸腾、光合、呼吸等都起着非常重要的作用。气孔在调节植物逆境环境中,常通过其开关来维持体内水分,在维持地球水分平衡、碳氧平衡及植物的生命活动中均发挥着非常重要的作用[49-50]。当光照、温度、CO2含量、叶片含水量、化学物质等环境因子发生变化时,植物通过调整气孔孔径大小来控制自身与外界的气体交换能力,以便能更好地适应外界环境[50-51]。拟南芥的原表皮细胞同时具有发育成扁平细胞、气孔和表皮毛的能力。原表皮细胞逐渐发育成拟分生组织母细胞MMC(meristemoid mother cell),属于气孔干细胞,并主导气孔系细胞的第1次不均等起始分裂,产生2个子细胞,小细胞为拟分生组织(meristemoid),继续进行细胞不均等分裂,或者分化为保卫细胞母细胞GMCs(guard mother cells);其中较大的姊妹细胞称为气孔系基础细胞SLGC(stomatal lineage ground cell),发育成扁平细胞PCs(pavement cells),GMCs再进行一次均等分裂,进而最终分化成2个保卫细胞GCs(guard cells),细胞壁加厚,逐渐形成孔状特化的气孔结构。气孔拟分生组织在发育过程中,经历1~3次不均等分裂形成气孔和多个扁平细胞[49]。把这种经过1~3次不均等分裂过程称为气孔系细胞的扩增分裂(amplifying division);把另一种气孔系基础细胞重新获得分裂能力,形成2个气孔和1个扁平细胞的分裂称为空间分裂(spacing division),这2种分裂模式同时调控气孔在表皮层的分布和发育,使气孔分布遵循“一个气孔间隔一个扁平细胞”交错的排列模式[49,52-53]。

拟南芥中有关气孔发育及调控机理有比较深入的研究,其信号通路主要包括转录因子,配体与受体、MAPK信号级联等[54-55]。已经报道了3个bHLH正调转录因子SPCH(Speechless)、MUTE 和FAMA,分别与另2种转录因子SCRM/ICE1(Scream/inducer of cbf expression 1) 和SCRM2(scream 2)形成异二聚体,分别调控由原表皮细胞向拟分生组织,拟分生组织向保卫细胞母细胞,以及保卫细胞母细胞向保卫细胞的分裂与分化3个关键过程[56-59];RNA聚合酶Ⅱ第3大亚基NRPB3(the third largest subunit of RNA polymerase Ⅱ) 能够与FAMA和ICE1相互作用,来执行气孔发育和图式分化特异的转录调控,功能缺陷型突变体nrpb3-1表现出2个气孔系细胞簇生的表型,包括簇生拟分生组织、GMCs和气孔复合体[60]。另外,MYB 转录因子主要包括FLP(FOUR LIPS) 和 MYB88,编码2种R2R3类 MYB 蛋白,与FAMA独立协同调控GMCs 向GCs的分化和转变,在此过程中,FAMA须结合另一种叫作RBR(RETINO BLASTOMA RELATED) 蛋白才能行使功能,均在气孔形成晚期发挥重要的调控作用[56,61-62]。配体主要包括表皮模式因子EPFs(epidermal patterning factors) 家族EPF1、EPF2、EPFL5、EPFL6负调控气孔发育,STOMAGEN/EPFL9则对气孔发育起正调节作用[63-65]。受体包括富亮氨酸重复区受体类激酶(LRR-LRK) 包括ERECTA家族成员[ER、ERL1(ERECTA LIKE 1) 和ERL2],以及SERK(SOMATIC EMBRYOGENESIS RECEPTOR KINASE) 家族成员SERK1-SERK4,与其共受体富亮氨酸重复的受体类蛋白TMM(TOO MANY MOUTH) 共同调控气孔系前体细胞的不均等分裂;植物促分裂原蛋白活化激酶级联信号MAPK信号级联(MAPK signaling cascade) 由促分裂原蛋白活化激酶YODA/MAPKKK、MKK4/MKK5/MKK7/MKK9和MPK3/MPK6构成,YODA-MKK4/5-MPK3/6信号级联通路中激酶的功能缺失导致叶表皮形成气孔簇,而持续激活将导致叶片没有气孔的形成[66-68],因此,不同的酶活性水平影响气孔系细胞的正常发育。此外,一个新的受体蛋白BASL(BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE) 也调控气孔系拟分生组织母细胞和拟分生组织细胞的不均等分裂[69-70]。枯草杆菌蛋白酶类的丝氨酸蛋白酶SDD1(STOMATAL DENSITY AND DISTRIBUTION1) 作用于TMM上游,在拟分生组织细胞和GMCs中表达,调控气孔图式发育[71-72]。

3 单子叶植物气孔及扁平细胞发育图式形成研究进展

虽然有关叶扁平细胞和气孔的研究在拟南芥中取得的进展令人鼓舞,但在玉米(ZeamaysL.)和水稻(OryzasativaL.) 等单子叶植物中,调控气孔及表皮细胞生长发育与形态建成的分子机制研究非常受限,因此亟待研究者去发现和挖掘。

单子叶植物中叶气孔及表皮细胞的生长发育、排列方式等与双子叶植物中截然不同[73]。在双子叶植物中,虽然2个气孔遵循间隔1个扁平细胞的排列模式,但是气孔杂乱无章地分布在叶表皮上,并且在成熟叶片中,处于各种分裂与分化状态的气孔和扁平细胞形态随时能被观察到。但是在单子叶禾本科植物中,气孔一列列整齐地排列在叶脉两侧,也遵循2个气孔间隔1个扁平细胞的排列模式[8]。早期叶原基形成后,气孔系细胞便开始分裂与分化,并在较短时间内完成发育,因此在成熟叶片中,几乎观察不到正处于分裂或者分化的气孔系细胞[73-74]。玉米叶气孔及扁平细胞的发育过程与水稻中基本一致[75],气孔都是由气孔系原始细胞(也叫保卫细胞母细胞前体细胞)进行第1次不等分裂,产生2个大小不一的子细胞,大细胞直接发育成PCs,而小细胞称为GMCs,GMCs具有气孔系干细胞命运,能继续分裂与分化;当位于GMCs两侧的副卫细胞母细胞SMCs(subsidary mother cells) 接收到GMCs传递的某种信号后,起初在GMCs 和SMCs 接触的位置形成微丝斑,然后SMCs的细胞核朝GMCs极化进行第2次不均等分裂,形成副卫细胞SCs(subsidary cells);最后,GMCs 再进行1次横向均等分裂,形成对称的2个保卫细胞,随着叶发育成熟,最终形成由2个三角形状的副卫细胞夹着2个哑铃状的保卫细胞组成的气孔复合体[76-79]。

目前研究发现,无论在双/单子叶植物中,气孔的分化均受到一类bHLH 家族转录因子的调控,主要包括SPCH、MUTE和FAMA[77]。在水稻中, OsSPCH2调控气孔形态及气孔密度,OsFAMA主要控制极性分裂及副卫细胞的形态变化,与ATFAMA功能保守,调控GMCs向特化GCs分裂。拟南芥中过表达OsMUTE气孔缺陷表型得到部分恢复,过表达ZmMUTE,也能诱导产生很多的保卫细胞,因此,推测在玉米中,同源蛋白ZmSPCH、ZmMUTE和ZmFAMA都参与调控气孔系细胞发育的信号通路[77]。玉米中富亮氨酸受体类激酶PAN1(PANGLOSS1) 和PAN2 作为受体识别来源于GMCs 传递的信号,调控SMCs的不均等分裂方向及其子细胞的极性分裂,功能缺失均导致气孔及表皮细胞结构异常,PAN2可能参与微丝极化,影响副卫细胞的形状,基因突变后能引起三角形的副卫细胞变成矩形[76,80-81]。Rho家族GTPase、ROP2和ROP9与PAN1互作,调控SMCs的极性分裂[82]。在单子叶植物二穗短柄草中,STOMATALESS(STL) 基因功能缺失导致叶片中不能形成气孔,并且证明STL基因就是拟南芥与水稻中ICE的同源基因[83]。同时他们利用CRISPR-Cas 9(clustered,regularly interspaced short palindromic repeats-associated 9) 基因编辑技术,分离到bdscrm2突变体,研究表明BdSCRM2功能缺陷,虽然能形成GMCs和SCs,但是GMCs将不能正常分裂,成为开孔。双突变体 bdspch1、bdspch2和 bdice1的突变体在气孔发育早期均不能形成GMCs前体细胞,导致气孔密度显著降低,这表明 BdSPCHs 和 BdICE1 的功能与拟南芥中的气孔调控比较相似,在调控气孔系细胞早期发育中发挥作用[83]。因此笔者推测在水稻及玉米等禾谷类作物中,同源蛋白ZmSPCHs(3个)、ZmICE1、ZmICE2、OsICE1和OsSCRM2等也参与气孔系细胞的分裂与分化,这有待更多的学者进行基因功能的研究,以期阐明调控单子叶植物气孔系细胞形态建成的内在基因调控网络。

对玉米及水稻中调控叶扁平细胞形态和表皮毛的基因,推测主要依赖Racs(ROPs)-SCAR/WAVE-ARP2/3复合体这一保守的信号通路[79]。在玉米中,早期报道了3个BRK(Brick)基因通过调控微丝成核,影响微丝排列而导致叶表皮细胞边缘突出(lobe) 的缺失,且表皮毛变短、尖端变钝化[84-85]。由于当时基因组信息的不完善,文章没有给出具体的基因座信息,更没有提出这3个基因就是WAVE复合体中的3个亚基,但是笔者通过生物信息学比对和分析,确定BRK1、BRK2和BRK3与拟南芥中HSP300、PIR/SRA1和NAP1就是相互对应的同源蛋白,且进化上功能保守,通过调控微丝成核分别引起叶表皮细胞形态变化[79,84-85]。在水稻中,表皮毛秃头基因 TUTOU1/ES1(Early Senescence 1)编码拟南芥及玉米SCAR1同源蛋白,通过控制微丝合成,影响表皮毛的形态发育,表皮毛尖端钝化,并证明功能缺失突变体 es1对干旱等逆境胁迫更敏感[86-87]。ZHOU等[79]在水稻中克隆了2个调控表皮细胞形态建成基因LPL2(less pronounced lobe epidermal cell 2) 和LPL3,分别是玉米BRK2和BRK3及拟南芥中PIR/SRA1和NAP1的同源基因,并证明LPL2和LPL3在调控水稻叶表皮细胞边缘凸出中发挥不可或缺的功能,同属于水稻SCAR/WAVE复合体的亚基,酵母双杂交试验表明LPL2和LPL3能够相互作用[88]。总之,虽然在单子叶植物中,也克隆到少数几个调控叶表皮细胞图式发育的基因,但是离阐明单子叶植物叶表皮形态建成机制仍相差甚远,亟待挖掘。

4 展 望

目前,对单子叶植物水稻、玉米叶表皮发育的遗传调控机制还悬而未决,单子叶植物气孔及扁平细胞的发育机制不等同于双子叶植物,新的分子遗传调控机制方面的许多问题亟待解决:(1)气孔方面:有哪些特异性基因参与调控单子叶植物气孔系细胞的分裂与分化?气孔发育图式是如何相互调控的?(2)表皮细胞方面:水稻及玉米等单子叶植物中是否存在依赖ROPs-SCAR/WAVE-ARP2/3复合体调控表皮细胞形态建成的信号通路?如果存在,分别由哪些亚基组成?各自的功能又是什么?还有哪些信号通路参与其中[79]?等等问题亟待探索和研究。

植物表皮细胞发育过程易于显微观察,是研究植物的生长发育、细胞分裂与分化、形态建成和抗逆生理性研究的理想模型[49]。克隆调控气孔发育相关基因、解析并研究基因功能,增进对水稻玉米等粮食作物气孔和表皮细胞发育机制的认识,可以通过转基因及基因编辑等分子育种手段选育既能节约淡水灌溉,又能促进农作物增产的优良品种的选育,对作物改良具有重大意义。

参考文献Reference:

[1] SMITH L G.Cytoskeletal control of plant cell shape:getting the fine points[J].CurrentOpinioninPlantBiology,2003,6(1):63.

[2] MATHUR J.Cell shape development in plants[J].TrendsinPlantScience,2004,9(12):583-590.

[3] SMITH L G,OPPENHEIMER D G.Spatial control of cell expansion by the plant cytoskeleton[J].AnnualReviewofCellandDevelopmentalBiology,2005,21(1):271.

[4] GUIMIL S,DUNAND C.Patterning ofArabidopsisepidermal cells:epigenetic factors regulate the complex epidermal cell fate pathway[J].TrendsinPlantScience,2006,11(12):601-609.

[5] GUIMIL S,DUNAND C.Cell growth and differentiation in arabidopsis epidermal cells[J].JournalofExperimentalBotany,2007,58(14):3829-3840.

[6] MARTIN C,GLOVER B J.Functional aspects of cell patterning in aerial epidermis.[J].CurrentOpinioninPlantBiology,2007,10(1):70.

[7] SCHELLMANN S,HLSKAMP M.Epidermal differentiation:trichomes inArabidopsisas a model system[J].InternationalJournalofDevelopmentalBiology,2004,49(5/6):579-584.

[8] LUO L,ZHOU W Q,LIU P,etal.The development of stomata and other epidermal cells on the rice leaves[J].BiologiaPlantarum,2012,56(3):521-527.

[9] GALLAGHER K,SMITH L G.Discordia mutations specifically misorient asymmetric cell divisions during development of the maize leaf epidermis[J].Development,1999,126(20):4623.

[10] GALLAGHER K,SMITH L G.Roles for polarity and nuclear determinants in specifying daughtercell fates after an asymmetric cell division in the maize leaf[J].CurrentBiology,2000,10(19):1229-1232.

[11] FU Y,GU Y,ZHENG Z,etal.Arabidopsisinterdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis[J].Cell,2005,120(5):687.

[12] SZYMANSKI D B,LLOYD A M,MARKS M D.Progress in the molecular genetic analysis of trichome initiation and morphogenesis inArabidopsis[J].TrendsinPlantScience,2000,5(5):214-219.

[13] HASHIMOTO T.Dynamics and regulation of plant interphase microtubules:a comparative view[J].CurrentOpinioninPlantBiology,2003,6(6):568-576.

[14] MLLER S,SMERTENKO A,WAGNER V,etal.The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function[J].CurrentBiology,2004,14(5):412-417.

[15] LIN D,CAO L,ZHOU Z,etal.Rho GTPase signaling activates microtubule severing to promote microtubule ordering inArabidopsis[J].CurrentBiology,2013,23(4):290-297.

[16] FU Y,XU T,ZHU L,etal.A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion inArabidopsis[J].CurrentBiology,2009,19(21):1827-1832.

[17] YANG Z.Cell polarity signaling inArabidopsis[J].AnnualReviewofCell&DevelopmentalBiology,2008,24(24):551-575.

[18] ARMOUR W J,BARTON D A,LAW A M,etal.Differential growth in periclinal and anticlinal walls during lobe formation inArabidopsiscotyledon pavement cells[J].PlantCell,2015,27(9):2484-2500.

[19] WASTENEYS G O,YANG Z.New views on the plant cytoskeleton[J].PlantPhysiology,2004,136(4):3884-3891.

[20] KLAHRE U,FRIEDERICH E,KOST B,etal.Villin-like actin-binding proteins are expressed ubiquitously inArabidopsis[J].PlantPhysiology,2000,122(1):35-48.

[21] DEEKS M J,KALORITI D,DAVIES B,etal.ArabidopsisNAP1 is essential for arp2/3-dependent trichome morphogenesis[J].CurrentBiology,2004,14(15):1410-1414.

[22] QIAN P,HOU S,GUO G.Molecular mechanisms controlling pavement cell shape inArabidopsisleaves[J].PlantCellReports,2009,28(8):1147-1157.

[23] WADA T,TACHIBANA T,SHIMURA Y,etal.Epidermal cell differentiation inArabidopsisdetermined by a myb homolog,CPC[J].Science,1997,277(5329):1113- 1116.

[24] WALKER A R,DAVISON P A,BOLOGNESI-WINFIELD A C,etal.The TRANSPARENT TESTA GLABRA1 locus,which regulate strichome differentiation and anthocyanin biosynthesis inArabidopsis,encodes a WD40 repeat protein[J].PlantCell,1999,11(7):1337-1350.

[25] PAYNE C T,ZHANG F,LOYD AM.GL3 encodes a bHLH protein that regulates trichome development inArabidopsisthrough interaction with GLl andTTG 1[J].Genetics,2000,156(3):1349-1362.

[26] 高 英,郭建强,赵金凤.拟南芥表皮毛发育的分子机制[J].植物学报,2011,46(1):119-127.

GAO Y,GUO J Q,ZHAO J F.Molecular mechanisms ofArabidopsistrichome development[J].ChineseBulletinofBotany,2011,46(1):119-127.

[27] 曹 敏,张 璐,高新梅,等.植物表皮毛发育分子调控机制的研究进展[J].安徽农业科学,2013,41(10):4231-4235.

CAO M,ZHANG L,GAO X M,etal.Research progress of molecular mechanism inthe development of plant trichomes[J].JournalofAnhuiAgriculture,2013,41(10):4231-4235.

[28] 刘艳霞,王 娟,兰海燕.基因调控网络调节植物表皮毛发育的研究进展[J].分子植物育种,2017(4):1362-1370.

LIU Y X,WANG J,LAN H Y.Advance in gene regulatory network of plant trichome development controlling[J].MolecularPlantBreeding,2017(4):1362-1370.

[29] COOPER J A,WEAR M A,WEAVER A M.Arp2/3 complex:advances on the inner workings of a molecular machine[J].Cell,2001,107(6):703-705.

[30] DIPANWITA B,JIE L E,TAYA Z,etal.A SPIKE1 signaling complex controls actin-dependent cell morphogenesis through the heteromeric WAVE and ARP2/3 complexes[J].ProceedingsoftheNationalAcadermyofSciencesoftheUSA,2008,105(10):4044-4049.

[31] QIU J L,JILK R,MARKS M D,etal.TheArabidopsisSPIKE1 gene is required for normal cell shape control and tissue development[J].PlantCell,2002,14(1):101-108.

[32] FU Y,LI H,YANG Z.The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion duringArabidopsisorganogenesis[J].PlantCell,2002,14(4):777-794.

[33] YANG Z.Small GTPases:versatile signaling switches in plants[J].PlantCell,2002,14(Suppl):S375.

[34] GU Y,WANG Z,YANG Z.ROP/RAC GTPase:an old new master regulator for plant signaling[J].CurrentOpinioninPlantBiology,2004,7(5):527-536.

[35] SZYMANSKI D B.Breaking the WAVE complex:the point ofArabidopsistrichomes[J].CurrentOpinioninPlantBiology,2005,8(1):103.

[36] YANAGISAWA M,ZHANG C,SZYMANSKI D B.ARP2/3-dependent growth in the plant kingdom:SCARs for life[J].FrontiersinPlantScience,2013,4(166):166.

[37] LE J,MALLERY E L,ZHANG C,etal.ArabidopsisBRICK1/HSPC300 is an essential WAVE-complex subunit that selectively stabilizes the Arp2/3 activator SCAR2[J].CurrentBiology,2006,16(9):895.

[38] DJAKOVICS,DYACHOK J,BURKE M,etal.BRICK1/HSPC300 functions with SCAR and the ARP2/3 complex to regulate epidermal cell shape inArabidopsis[J].Development,2006,133(6):1091-1100.

[39] CHEN Z,BOREK D,PADRICK S B,etal.Structure and control of the actin regulatory WAVE complex[J].Nature,2010,468(7323):533.

[40] MENDOZA M C.Phosphoregulation of the WAVE regulatory complex and signal integration[J].SeminarsinCell&DevelopmentalBiology,2013,24(4):272-279.

[41] FRANK M,EGILE C,DYACHOK J,etal.Activation of Arp2/3 complex-dependent actin polymerization by plant proteins distantly related to Scar/WAVE[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,2004,101(46):16379.

[42] BASU D,LE J,SEL-D E E,etal.DISTORTED3/SCAR2 is a putativeArabidopsisWAVE complex subunit that activates the Arp2/3 complex and is required for epidermal morphogenesis[J].PlantCell,2005,17(2):502-524.

[43] HENRY N.HIGGS AND,THOMAS D.Activation by a diverse array of proteins1[J].AnnualReviewofBiochemistry,2001,70(1):649-676.

[44] POLLARD T D.Regulation of actin filament assembly by Arp2/3 complex and formins[J].AnnualReviewofBiophysics&BiomolecularStructure,2007,36(36):451.

[45] LEW D J.The morphogenesis checkpoint:how yeast cells watch their figures[J].CurrentOpinioninCellBiology,2003,15(6):648.

[46] MATHUR J,MATHUR N,KERNEBECK B,etal.Mutations in actin-related proteins 2 and 3 affect cell shape development inArabidopsis[J].PlantCell,2003,15(7):1632-1645.

[47] SELD E A,LE J,BASU D,etal.ArabidopsisGNARLED encodes a NAP125 homolog that positively regulates ARP2/3[J].CurrentBiology,2004,14(15):1405.

[48] YANAGISAWA M,DESYATOVA A S,BELTETON S A,etal.Patterning mechanisms of cytoskeletal and cell wall systems during leaf trichome morphogenesis[J].NaturePlants,2015,1(3):15014.

[49] BERGMANN D C,SACK F D.Stomatal development[J].AnnualReviewofCellandDevelopmentalBiology,2007,58(1):163-181.

[50] LIU B F,GAO E J,ZENG X Z,etal.Plant development:YODA the stomatal switch[J].CurrentBiology,2004,14(12):488-490.

[51] SCHROEDER J I,KWAK J M,ALLEN G J.Guard cell abscisic acid signalling and engineering drought hardiness in plants[J].Nature,2001,410(6826):327-330.

[52] PILLITTERI L J,TORII K U.Mechanisms of stomatal development[J].AnnualReviewofPlantBiology,2012,63(1):591-614.

[53] PILLITTERI L J,DONG J.Stomatal development inArabidopsis[J].TheArabidopsisBook/AmericanSocietyofPlantBiologists,2013,11:162.

[54] 陈青云,李有志,樊宪伟.植物气孔发育的分子调控机制[J].遗 传,2017,39(4):302-312.

CHEN Q Y,LI Y ZH,FAN X W.Molecule mechanism for regulating stomatal development inplants[J].Hereditas,2017,39(4):302-312.

[55] 陈 亮,侯岁稳.植物气孔发育的分子遗传调控[J].中国科学(生命科学),2017,47(8):798-807.

CHEN L,HOU S W.Molecular genetic control of plant stomatal development[J].ScientiaSinicaVitae(LifeScience),2017,47(8):798-807.

[56] OHASHIIT O K,BERGMANN D C.ArabidopsisFAMA controls the final proliferation/differentiation switch during stomatal development[J].PlantCell,2006,18(10):2493-2505.

[57] MACALISTER C A,OHASHI-ITO K,BERGMANN D C.Transcription factor control of asymmetric cell divisions that establish the stomatal lineage[J].Nature,2007,445(7127):537-540.

[58] PILLITTERI L J.Termination of asymmetric cell division and differentiation of stomata[J].Nature,2007,445(7127):501-505.

[59] KANAOKA M M,PILLITTERI L J,FUJII H,etal.SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading toArabidopsisstomatal differentiation[J].PlantCell,2008,20(7):1775.

[60] CHEN L,GUAN L,QIAN P,etal.NRPB3,the third largest subunit of RNA polymerase Ⅱ,is essential for stomatal patterning and differentiation inArabidopsis[J].Development,2016,143(9):1600-1611.

[61] LAI L B,NADEAU J A,LUCAS J,etal.TheArabidopsisR2R3 MYB proteins FOUR LIPS and MYB88 restrict divisions late in the stomatal cell lineage[J].ThePlantCell,2005,17(10):2754.

[62] MATOS J L,LAU O S,HACHEZ C,etal.Irreversible fate commitment in theArabidopsisstomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module[J].Elife,2014,3:15.

[63] HUNT L,BAILEY K J,GRAY J E.The signalling peptide EPFL9 is a positive regulator of stomatal development[J].NewPhytologist,2010,186(3):609-614.

[64] SUGANO S S,SHIMADA T,IMAI Y,etal.Stomagen positively regulates stomatal density inArabidopsis[J].Nature,2010,463(7278):241.

[65] LEE J S,HNILOVA M,MAES M,etal.Competitive binding of antagonistic peptides fine-tunes stomatal patterning[J].Nature,2015,522(7557):439.

[66] WANG Y,XUE X,ZHU J K,etal.Demethylation of ERECTA receptor genes by IBM1 histone demethylase affects stomatal development[J].Development,2016,143(23):4452.

[67] LAMPARD G R,LUKOWITZ W,ELLIS B E,etal.Novel and expanded roles for MAPK signaling inArabidopsisstomatal cell fate revealed by cell type-specific manipulations [J].PlantCell,2009,21(11):3506.

[68] MENG X,CHEN X,MANG H,etal.Differential function ofArabidopsis,SERK family receptor-like kinases in stomatal patterning[J].CurrentBiology,2015,25(18):2361-2372.

[69] DONG J,CORA A M,DOMINIQUE C B.BASL controls asymmetric cell division inArabidopsis[J].Cell,2009,137(7):1320-1330.

[70] ZHANG Y,WANG P,SHAO W,etal.The BASL polarity protein controls a MAPK signaling feedback loop in asymmetric cell division[J].DevelopmentalCell,2015,33(2):136.

[71] BERGER D,ALTMANN T.A subtilisin-like serine protease involved in the regulation of stomatal density and distribution inArabidopsisthaliana[J].Genes&Development,2000,14(9):1119-1131.

[72] GROLL U V,BERGER D,ALTMANN T.The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling duringArabidopsisstomatal development[J].PlantCell,2002,14(7):1527-1539.

[73] PETERSON K M,RYCHEL A L,TORII K U.Out of the mouths of plants:the molecular basis of the evolution and diversity of stomatal development[J].PlantCell,2010,22(2):296-306.

[74] CASSON S A,FRANKLIN K A,GRAY J E,etal.Phytochrome B and PIF4 regulate stomatal development in response to light quantity[J].CurrentBiology,2009,19(3):229-234.

[75] SACK F D,CHEN J G.Plant science.Pores in place[J].Science,2009,323(5914):592-593.

[76] CARTWRIGHT H N,HUMPHRIES J A,SMITH L G.PAN1:a receptor-like protein that promotes polarization of an asymmetric cell division in maize[J].Science,2009,323(5914):649-651.

[77] LIU T,OHASHI-ITO K,BERGMANN D C.Orthologs ofArabidopsisthalianastomatalbHLHgenes and regulation of stomatal development in grasses[J].Development,2009,136(13):2265-2276.

[78] ZHANG X,FACETTE M,HUMPHRIES J A,etal.Identification of PAN2 by quantitative proteomics as a leucine-rich repeat-receptor-like kinase acting upstream of PAN1 to polarize cell division in maize[J].PlantCell,2012,24(11):4577.

[79] ZHOU W Q,WANG Y,WU Z,etal.Homologs of SCAR/WAVE complex components are required for epidermal cell morphogenesis in rice[J].JournalofExperimentalBotany,2016,67(14):4311-4323.

[80] SUTIMANTANAPI D,PATER D,SMITH L G.Divergent roles for maize PAN1 and PAN2 receptor-like proteins in cytokinesis and cell morphogenesis[J].PlantPhysiology,2014,164(4):1905-1917.

[81] FACETTE M R,PARK Y,SUTIMANTANAPI D,etal.The SCAR/WAVE complex polarizes PAN receptors and promotes division asymmetry in maize[J].NaturePlants,2015,1(2):14024.

[82] HUMPHRIES J A,SMITH L G.ROP GTPases act with the receptor-like protein PAN1 to polarize asymmetric cell division in maize[J].PlantCell,2011,23(6):2273-2284.

[83] RAISSIG MT,ABRASH E,BETTADAPUR A,etal.Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,2016,113(29):8326.

[84] FRANK M J,SMITH L G.A small,novel protein highly conserved in plants and animals promotes the polarized growth and division of maize leaf epidermal cells[J].CurrentBiology,2002,12(10):849.

[85] FRANK M J,CARTWRIGHT H N,SMITH L G.Three brick genes have distinct functions in a common pathway promoting polarized cell division and cell morphogenesis in the maize leaf epidermis[J].Development,2003,130(4):753.

[86] BAI J,ZHU X,WANG Q,etal.Rice TUTOU1 encodes a SCAR-like protein that is important for actin organization and panicle development[J].PlantPhysiology,2015,169(2):1179-1191.

[87] RAO Y,YANG Y,XU J,etal.EARLY SENESCENCE1 encodes a SCAR-LIKE PROTEIN2 that affects water loss in rice[J].PlantPhysiology,2015,169(2):1225-1239.

[88] BASU D,ELASSAL E D,LE J,etal.Interchangeable functions ofArabidopsisPIROGI and the human WAVE complex subunit SRA1 during leaf epidermal development[J].Development,2004,131(17):4345.

猜你喜欢

扁平复合体拟南芥
拟南芥栽培关键技术研究
全球治理趋向扁平
膝关节创伤性多发韧带损伤中后外复合体重建的临床疗效
为什么萤火虫会发光
基于三维扫描技术陶瓷扁平制品表面积的测量方法
RAB37直接与ATG5相互作用并通过调控ATG5-12-16复合体装配促进自噬体形成
老年人颧骨复合体骨折20例临床分析
拟南芥
口水暴露了身份
仅趾间扁平湿疣为表现的二期梅毒一例