APP下载

Progresses of radiogenomics in association between CT features and driver gene mutations of non-small cell lung cancer

2018-01-24,

中国医学影像技术 2018年6期
关键词:重排外显子组学

,

(Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin Clinical Research Center for Cancer, Tianjin 300060, China)

非小细胞肺癌(non-small cell lung cancer, NSCLC)约占所有肺癌的85%,其驱动基因包括表皮生长因子受体(epidermal growth factor receptor, EGFR)、KRAS、BRAF、PIK3CA及ALK基因等[1]。近年来,针对特异性基因或蛋白的靶向治疗使晚期NSCLC患者得到良好的生存获益,并提高了生活质量,已成为最受关注和最有前途的治疗手段之一。

获得准确的分子表型是指导NSCLC靶向治疗的前提,然而,由于NSCLC的不均质性,活检获得的小块组织难以准确反映肿瘤的基因突变情况,而反复多次的活检在临床并不可行;高昂的基因检测费用也在一定程度上限制了其临床应用。影像学检查是NSCLC的常规检查手段,可监测肿瘤治疗疗效;影像学表现可全面反映肿瘤的病理生理学及分子生物学特征。影像组学技术从医学影像(CT、MRI、PET等)中高通量地提取定量特征,将数字影像转化为大量可挖掘的数据,从而成为临床决策支持工具[2]。影像基因组学是研究影像组学数据与基因组学联系的科学[3],致力于揭示肿瘤的影像学特征(影像表型)与分子标志物(分子表型)之间的关系,将临床成像推进到分子和基因组成像的时代[4]。靶向治疗的发展促使研究者们积极探寻与NSCLC驱动基因突变相关的影像标志物。本文对NSCLC的CT特征与驱动基因突变相关性的影像基因组学研究进展进行综述。

1 NSCLC的CT特征与驱动基因突变的相关性

1.1 EGFR基因突变与CT特征 EGFR突变最常发生于酪氨酸激酶功能区的18~21外显子,其中19外显子缺失和21外显子L858R突变是最常见的EGFR药物敏感突变,20外显子的T790M突变与肿瘤耐药有关[5]。EGFR突变多见于腺癌,亚洲人群突变率约为20%~60%,白种人突变率约5%~20%,多见于不吸烟的年轻女性[6]。针对EGFR靶点的酪氨酸激酶抑制剂的发展开创了肺癌个体化治疗的新时代,针对此基因的靶向治疗药物包括第1代的吉非替尼、厄洛替尼及埃克替尼,第2代的阿法替尼和第3代的奥希替尼等。

研究[7-9]报道EGFR突变相关的CT特征包括小病灶、支气管充气征、胸膜凹陷征、空泡征、均匀强化、磨玻璃密度影(ground-glass opacity, GGO)、无肺气肿或肺纤维化等,但各中心的研究结果并不完全一致。Gevaert等[9]发现肿瘤边缘明显不规则(毛刺、分叶或边界不清)与EGFR突变相关,而其他研究者则未发现二者间具有相关性[7,10-11]。一项Meta分析[12]结果显示亚实性病灶倾向于存在EGFR突变,而其他CT特征包括肿瘤大小、空洞、支气管充气征、分叶和毛刺等均与EGFR突变无相关。一些研究者[11,13-15]深入分析了与EGFR突变亚型相关的影像学特征。Lee等[13]对手术切除肺腺癌组织的研究显示,21外显子突变肺腺癌的GGO体积比例(61.7%±31.9%)明显高于野生型(30.0%±38.5%;P=0.000 1)和19外显子缺失者(28.9%±37.7%;P=0.000 6)。Hsu等[11]研究进展期肺腺癌发现,21外显子突变的肿瘤最大径为(4.2±2.1)cm,大于19外显子缺失者[(3.2±1.7)cm;P=0.02)],且19外显子缺失的肺腺癌患者较野生型(P=0.004)或21外显子突变者(P=0.01)更常出现支气管充气征。Zhao等[14]亦发现支气管充气征是19外显子缺失的独立预测因子(P=0.007,优势比2.91)。Shi等[15]发现19外显子缺失相关的影像特征包括肿瘤较小、女性、胸膜凹陷征及无肺纤维化,而21外显子突变相关的特征包括毛刺、亚实性病灶和无吸烟史。

除传统影像特征外,近年来影像组学也用于探寻NSCLC计算机定量特征与EGFR突变的相关性。Sacconi等[16]发现CT值均数、标准差和偏度与晚期肺腺癌的EGFR突变相关。Liu等[17]提取了298例手术切除肺腺癌组织的219个3D特征,发现其中11个与EGFR突变相关,多元逻辑回归模型显示增加影像组学特征后,可显著提高临床特征对肺腺癌的EGFR突变预测能力[曲线下面积(area under the curve, AUC)=0.667 vs AUC=0.709;P<0.000 1]。Aerts等[18]观察47例早期NSCLC吉非替尼治疗前后的影像组学特征,以预测EGFR突变,发现治疗前Laws Energy-10 (AUC=0.67,P=0.03)可预测EGFR突变;治疗前后特征变化中,除肿瘤体积和最大径变化外,Gabor Energy (dir135-w3)的变化亦可预测EGFR突变(AUC=0.74,P=0.000 3)。Rios Velazquez等[19]观察来自4个医疗中心的763例肺腺癌患者的影像组学特征,分析其与EGFR和KRAS突变的关系,单因素分析显示16个特征与EGFR突变相关,这些特征均提示EGFR突变的肿瘤更不均质;影像组学特征可区分EGFR阳性与EGFR阴性(AUC=0.69),结合临床特征可显著提高预测的准确率(AUC=0.75),且可区分EGFR阳性及KRAS阳性(AUC=0.80),结合临床特征可显著提高预测准确率(AUC=0.86)。

1.2 KRAS基因突变与CT特征 KRAS基因突变最常发生于2、3外显子,多见于腺癌,白种人突变率约为25%~50%,亚洲人群突变率约5%~15%,好发于吸烟者[20]。KRAS突变目前尚无特异性靶向治疗药物,其与影像特征相关性的研究较少,部分研究[9]未发现KRAS突变的影像标志物。Sugano等[10]研究显示KRAS突变更常见于最大径≥31 mm的肿瘤(P=0.003)。笔者前期[21]研究手术病理证实的Ⅰ期肺腺癌患者的CT特征与KRAS突变的关系,发现毛刺征与KRAS突变相关(优势比2.99)。Rizzo等[7]研究发现圆形病灶(优势比2.40)和非肿瘤所在肺叶结节(优势比1.89)与KRAS突变相关。Wang等[22]认为ⅠA期肺腺癌中GGO比例小者更常出现KRAS突变 (P=0.018)。

在影像基因组学领域,Weiss等[23]研究KRAS突变型与野生型(26种基因突变检测均阴性)早期NSCLC纹理特征差别,发现精细纹理的阳性偏度(P=0.031)和粗糙纹理的较低峰度(P=0.009)与KRAS突变相关。前述Rios Velazquez等[19]的研究发现10个特征与KRAS突变相关,这些特征提示存在KRAS突变的肿瘤更均质。影像组学特征可区分KRAS阳性与KRAS阴性,但预测效能有限(AUC=0.63),且结合临床特征后并不能提高临床特征的预测准确率(AUC=0.69)。

1.3 ALK基因重排与CT特征 ALK基因重排中,EML4和ALK融合(EML4-ALK)最常见,多见于肺腺癌,发生率约4%,好发于年轻不吸烟或轻度吸烟者[24]。克唑替尼是一种小分子ATP竞争性酪氨酸激酶抑制剂,除ALK外,还具有c-MET和ROS1靶点[24],于2011年获得美国食品与药品监督管理局批准,2013年在中国获批上市。研究[25-26]报道存在ALK重排的NSCLC多为无GGO成分的实性肿瘤。也有研究[27]显示ALK重排相关的CT特征为肿瘤位于锁骨中线内侧、无胸膜尾征及伴大量胸腔积液。ALK重排与EGFR突变NSCLC的临床特征相似,均好发于年轻不吸烟者,因此研究者们试图探寻二者之间影像特征的差异。已有研究[28-30]结果显示,相比于存在EGFR突变的肿瘤,ALK重排肿瘤更倾向于实性、无或少GGO成分,伴多发淋巴结肿大[30-32],尤其是N分期较晚的淋巴结肿大。更常见于ALK重排的肿瘤的CT特征还包括增强时CT值较低[29]、癌性淋巴管炎[32]等。有些研究结果甚至相互矛盾,如Kim等[29]和Choi等[32]发现ALK重排肿瘤边缘多分叶,而Zhou等[28]的研究发现分叶状边缘更常见于存在EGFR突变的肿瘤。

融合阳性肺腺癌的影像特征为近年来此领域研究的新兴趣点。Yoon等[33]观察ALK、ROS1和RET阳性肺腺癌的临床特征和包括定性、定量CT及PET/CT特征的影像组学特征,发现相比于ROS1或RET阳性的肺腺癌,ALK重排肿瘤分期更晚(P=0.042),多位于锁骨中线内侧(P=0.017),最大标准摄取值(standardized uptake value,SUVmax)更高(P=0.005),1、2、3体素距离的均匀度更高(P=0.030、0.023、0.028),2体素距离的均值和更大(P=0.049)。

1.4 其他驱动基因突变与CT特征 由于突变率低或缺乏特异性靶向治疗药物等原因,NSCLC其他驱动基因突变相关影像特征的研究罕见。ROS1和RET重排均分别占肺腺癌的1%~2%[34]。Plodkowski等[35]研究ROS1和RET重排肺腺癌的CT特征,认为ROS1重排组较EGFR突变组肿瘤更好发于肺外周部(P=0.04),而RET重排组与EGFR突变组CT特征间无明显差异。BRAF突变占NSCLC的2%~5%[36],Halpenny等[37]研究了BRAF突变肺癌的影像特征,结果显示BRAF突变组与非突变组原发肿瘤的CT特征无显著性差异,BRAF突变组较KRAS突变组更易出现胸腔积液(P=0.033)和胸膜转移 (P=0.045)。

2 NSCLC影像基因组学面临的挑战和机遇

NSCLC影像学特征与分子表型间存在内在联系,CT特征对预测基因突变有一定提示作用。但影像基因组学研究尚处于初始阶段,各研究间结论尚不统一。造成这种现象的原因可能是大多数研究为回顾性分析,样本量相差较大,病例构成比即性别、年龄、种族、吸烟状态、组织学类型及分期不同,基因突变检测方法各异等。传统影像学定性评价存在缺乏统一评价标准、受阅片者经验等主观因素影响的问题,而计算机提取定量特征的影像组学研究也存在诸多问题,如数据采集方面受设备、扫描参数和是否使用对比剂的影响,肿瘤分割、特征提取筛选及预测模型建立方面尚缺乏规范化、标准化的流程和质量控制体系[38]。虽然增加影像组学特征可提高对EGFR突变的预测效能,但其本身的预测效能并不优于临床特征[17-19];而即使增加影像组学特征也不能提高对KRAS突变的预测效能[19]。未来还需要通过多专业合作、多中心研究,实现数据共享,优化影像组学流程和算法,共同努力提高预测基因突变的准确率,从而在制定临床决策和精准医疗中发挥更大作用。

[参考文献]

[1] An SJ, Chen ZH, Su J, et al. Identification of enriched driver gene alterations in subgroups of non-small cell lung cancer patients based on histology and smoking status. PLoS One, 2012,7(6):e40109.

[2] 刘再毅,梁长虹.促进影像组学的转化研究.中国医学影像技术,2017,33(12):1765-1767.

[3] Gillies RJ, Kinahan PE, Hricak H. Radiomics: Imagesare more than pictures, they are data. Radiology, 2016,278(2):563-577.

[4] Kuo MD, Jamshidi N. Behind the numbers: Decoding molecular phenotypes with radiogenomics-guiding principles and technical considerations. Radiology, 2014,270(2):320-325.

[5] Su KY, Chen HY, Li KC, et al. Pretreatment epidermal growth factor receptor (EGFR) T790M mutation predicts shorter EGFR tyrosine kinase inhibitor response duration in patients with non-small-cell lung cancer. J Clin Oncol, 2012,30(4):433-440.

[6] Villa C, Cagle PT, Johnson M, et al. Correlation of EGFR mutation status with predominant histologic subtype of adenocarcinoma according to the new lung adenocarcinoma classification of the International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society. Arch Pathol Lab Med, 2014,138(10):1353-1357.

[7] Rizzo S, Petrella F, Buscarino V, et al. CT radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer. Eur Radiol, 2016,26(1):32-42.

[8] Liu Y, Kim J, Qu F, et al. CT features associated with epidermal growth factor receptor mutation status in patients with lung adenocarcinoma. Radiology, 2016,280(1):271-280.

[9] Gevaert O, Echegaray S, Khuong A, et al. Predictive radiogenomics modeling of EGFR mutation status in lung cancer. Sci Rep, 2017,7:41674.

[10] Sugano M, Shimizu K, Nakano T, et al. Correlation between computed tomography findings and epidermal growth factor receptor and KRAS gene mutations in patients with pulmonary adenocarcinoma. Oncol Rep, 2011,26(5):1205-1211.

[11] Hsu JS, Huang MS, Chen CY, et al. Correlation between EGFR mutation status and computed tomography features in patients with advanced pulmonary adenocarcinoma. J Thorac Imaging, 2014,29(6):357-363.

[12] Cheng Z, Shan F, Yang Y, et al. CT characteristics of non-small cell lung cancer with epidermal growth factor receptor mutation: A systematic review and meta-analysis. BMC Med Imaging, 2017,17(1):5.

[13] Lee HJ, Kim YT, Kang CH, et al. Epidermal growth factor receptor mutation in lung adenocarcinomas: Relationship with CT characteristics and histologic subtypes. Radiology, 2013,268(1):254-264.

[14] Zhao J, Dinkel J, Warth A, et al. CT characteristics in pulmonary adenocarcinoma with epidermal growth factor receptor mutation. PLoS One, 2017,12(9):e0182741.

[15] Shi Z, Zheng X, Shi R, et al. Radiological andclinical features associated with epidermal growth factor receptor mutation status of Exon 19 and 21 in lung adenocarcinoma. Sci Rep, 2017,7(1):364.

[16] Sacconi B, Anzidei M, Leonardi A, et al. Analysis of CT features and quantitative texture analysis in patients with lung adenocarcinoma:A correlation with EGFR mutations and survival rates. Clin Radiol, 2017,72(6):443-450.

[17] Liu Y, Kim J, Balagurunathan Y, et al. Radiomicfeatures are associated with EGFR mutation status in lung adenocarcinomas. Clin Lung Cancer, 2016,17(5):441-448.e6.

[18] Aerts HJ, Grossmann P, Tan Y, et al. Defining aradiomic response phenotype: A pilot study using targeted therapy in NSCLC. Sci Rep, 2016,6:33860.

[19] Rios Velazquez E, Parmar C, Liu Y, et al. Somatic mutations drive distinct imaging phenotypes in lung cancer. Cancer Res, 2017,77(14):3922-3930.

[20] Karachaliou N, Mayo C, Costa C, et al.KRAS mutations in lung cancer. Clin Lung Cancer, 2013,14(3):205-214.

[21] Wang H, Schabath MB, Liu Y, et al. Associationbetween computed tomographic features and Kirsten rat sarcoma viral oncogene mutations in patients with stage Ⅰ lung adenocarcinoma and their prognostic value. Clin Lung Cancer, 2016,17(4):271-278.

[22] Wang T, Zhang T, Han X, et al. Impact of the International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification of stage IA adenocarcinoma of the lung: Correlation between computed tomography images and EGFR and KRAS gene mutations.Exp Ther Med, 2015,9(6):2095-2103.

[23] Weiss GJ, Ganeshan B, Miles KA, et al. Noninvasive image texture analysis differentiates K-ras mutation from pan-wildtype NSCLC and is prognostic. PLoS One, 2014,9(7):e100244.

[24] Shaw AT, Engelman JA. ALK in lung cancer: Past, present, and future. J Clin Oncol, 2013,31(8):1105-1111.

[25] Fukui T, Yatabe Y, Kobayashi Y, et al. Clinicoradiologic characteristics of patients with lung adenocarcinoma harboring EML4-ALK fusion oncogene. Lung cancer, 2012,77(2):319-325.

[26] Park J, Yamaura H, Yatabe Y, et al. Anaplastic lymphoma kinase gene rearrangements in patients with advanced-stage non-small-cell lung cancer: CT characteristics and response to chemotherapy. Cancer Med, 2014,3(1):118-123.

[27] Yamamoto S, Korn RL, Oklu R, et al. ALK molecular phenotype in non-small cell lung cancer: CT radiogenomic characterization. Radiology, 2014,272(2):568-576.

[28] Zhou JY, Zheng J, Yu ZF, et al. Comparative analysis of clinicoradiologic characteristics of lung adenocarcinomas with ALK rearrangements or EGFR mutations.Eur Radiol, 2015,25(5):1257-1266.

[29] Kim TJ, Lee CT, Jheon SH, et al. Radiologic characteristics of surgically resected non-small cell lung cancer with ALK rearrangement or EGFR mutations. Ann Thorac Surg, 2016,101(2):473-480.

[30] Wang H, Schabath MB, Liu Y, et al. Clinical and CT characteristics of surgically resected lung adenocarcinomas harboring ALK rearrangements or EGFR mutations.Eur J Radiol, 2016,85(11):1934-1940.

[31] Halpenny DF, Riely GJ, Hayes S, et al. Are there imaging characteristics associated with lung adenocarcinomas harboring ALK rearrangements? Lung cancer, 2014,86(2):190-194.

[32] Choi CM, Kim MY, Hwang HJ, et al. Advanced adenocarcinoma of the lung:Comparison of CT characteristics of patients with anaplastic lymphoma kinase gene rearrangement and those with epidermal growth factor receptor mutation. Radiology, 2015,275(1):272-279.

[33] Yoon HJ, Sohn I, Cho JH, et al. Decodingtumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach. Medicine (Baltimore), 2015,94(41):e1753.

[34] Pan Y, Zhang Y, Li Y, et al. ALK, ROS1 and RET fusions in 1139 lung adenocarcinomas:A comprehensive study of common and fusion pattern-specific clinicopathologic, histologic and cytologic features. Lung cancer, 2014,84(2):121-126.

[35] Plodkowski AJ, Drilon A, Halpenny DF, et al. From genotype to phenotype: Are there imaging characteristics associated with lung adenocarcinomas harboring RET and ROS1 rearrangements? Lung cancer, 2015,90(2):321-325.

[36] Marchetti A, Felicioni L, Malatesta S, et al. Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J Clin Oncol, 2011,29(26):3574-3579.

[37] Halpenny DF, Plodkowski A, Riely G, et al. Radiogenomic evaluation of lung cancer- Are there imaging characteristics associated with lung adenocarcinomas harboring BRAF mutations? Clin Imaging, 2017,42:147-151.

[38] Larue RT, Defraene G, De Ruysscher D, et al. Quantitative radiomics studies for tissue characterization: A review of technology and methodological procedures. Br J Radiol, 2017,90(1070):20160665.

猜你喜欢

重排外显子组学
外显子跳跃模式中组蛋白修饰的组合模式分析
影像组学在肾上腺肿瘤中的研究进展
东莨菪碱中毒大鼠的代谢组学
影像组学在核医学影像中的应用进展
外显子组测序助力产前诊断胎儿骨骼发育不良
环己酮肟重排反应酸肟比联锁方案评析
重排滤波器的实现结构*
Ig/TCR基因重排在儿童急性T淋巴细胞白血病中的表达模式特点
外显子组测序助力产前诊断胎儿骨骼发育不良
基于UHPLC-Q-TOF/MS的归身和归尾补血机制的代谢组学初步研究