除数是两位数的试商方法
2018-01-13欧南
欧南
在人教版四年级的教材中,除数是两位数的除法成为学生必须理解掌握的重点,它不仅是在除数是一位数除法基础上的深化,更是为学生日后学习小数除法奠定基础。
除数是两位数的除法这一具体内容中,主要涵盖除数是两位数的试商方法,也为学生计算能力的提高奠定基础。笔者在实际教学中发现,学生对这一知识的接受能力相对较差,即运算正确率特别低,在实际运算时无从下手,总是将商的位置乱写、瞎写,学生根本分不清楚商的具体位置,尤其是出现被除数和除数末尾都带0的计算,商的位置应该写在哪里,学生最容易混淆。学生的乘法计算不过关,在试商时不是偏大就是偏小,且没有准确的判断力,总是在试过多次之后才能确定答案,所用时间过长,效率低下,或者就是部分学生在试商时没有发现该商与除数相乘的结果与被除数不相符,导致最终的计算错误。学生的书写习惯有问题,数位没有对齐,计算自然容易出错,借位需要的记录常常忘记,导致最终的结果计算错误。由这些现象不难发现,除数是两位数的除法这一知识点看似简单,学生掌握情形却不甚理想,做题所反映出的根本问题在于学生的基础知识不扎实,无法对知识进行熟练的掌握与运用,因而学生在接受新内容的学习时相对较慢,且错误率更高。
由此,笔者认为在进行新内容的讲解时首先要确保学生对旧知识的熟练掌握与理解。笔者根据本班学生的掌握情形在开展除数是两位数的试商方法讲解前,先抽出一节课的时间带领学生复习除法的相关内容,包括除法的运算法则、竖式计算的书写规范、有余数的除法和整除除法之间的区别与联系等内容,在帮学生进行回忆后以出题的形式加强学生的运算能力,让学生加强练习,再由笔者进行批阅,笔者所出示的题目也都是有代表性和针对性的,比如210÷3,558÷6,339÷5,都是让学生练习除法计算的基本类型以及具体题型的书写规范,通过对学生加強练习,再加上笔者对具体细节的讲解,增加了学生的正确认识,促成了学生对基础知识的扎实掌握。如此,笔者再根据学生的掌握情形进行课下作业的布置,全面加深学生的印象以及做题规范格式。
基于此,笔者再进行除数是两位数的试商方法就相对容易了,笔者在讲解时以学生之前做的练习为例展开深入分析,再穿插新知识的讲解,让学生自己领会除数是一位数和两位数的不同,再根据除数是两位数的内容具体讲解试商方法,试商方法主要包括以下几种:
第一种:四舍五入法。这种方法在除数是两位数的情况时最为常见,即若除数的第二位数字小于4时就舍去,看作整10的数进行计算,如21、22、23、24这些数字做除数时都看作20进行计算;而若除数的第二位数字大于5时就选择加上,看作整10的数进行计算,如35、36、37、38、39这些数字做除数时都看作40进行计算。如此则大大提高学生的运算时间和运算效率,从而帮助学生提高自身的运算能力。
第二种:折半估商法。这种方法是在四舍五入试商法基础上的升华。首先将被除数的最高位和除数作比较,看二者是否有联系,再根据二者的联系进行针对性的试商,这样计算商的正确率反而更高。如648÷12这个计算,被除数的首位数字是6,是除数12的一半,那在进行商的试算时就可以寻求12乘以哪个数等于60或60以上的数,更接近商的结果,由12×5=60可知,可试商为5,则余数是4,比除数小符合要求,如此再进行下一步的计算。
第三种:随舍随入试商法。这是在四舍五入基础上的转变。即不仅要对除数进行四舍五入看待,被除数也要进行四舍五入看待,都将其估作新的数再进行除法的计算。例如计算576÷64的结果,先看除数64,遵从四舍五入法则看作60,再看被除数576,按照四舍五入法则看作580,由此进行计算发现并不合适,因此就不能单纯地将576看作580,而应把6舍去看作570进行计算,最后得出商为9,正好被整除,符合题目要求。这种随舍随入试商法具有一定的随机性,主要考查学生的观察能力和思维能力,而这种能力是可以随着学生的不断练习而强化提升的,对于学生整体计算能力的提高都有很大助益。
这些试商方法都是笔者在课堂上给学生讲解并加强练习的方法,而这些方法的应用根本在于勤加练习,只有多练习才能让学生在计算时更快地查找出数字之间的有效联系,促进学生在最短时间内计算出最终正确结果。而勤加练习也能指引学生形成自己的试商方法,便于学生的日后计算。笔者将这些方法讲解后,为了加深学生的理解印象,采用多媒体动画教学的形式让学生进行练习,判断笔者给出的计算题目结果是否正确,具体错在哪里,如何改正等等,让学生通过“找错误”的形式加深对知识的理解程度,树立学生正确的思维习惯,并帮助学生奠定信心,从而将知识的运用达到完全掌握、熟练的程度。
此篇教学实践是笔者结合自己的教学内容以及知识的运用所作出的总结性研究,旨在更好地帮助学生尽快掌握除数是两位数的试商方法,以指引学生日后的学习与计算。当然,试商方法除笔者的介绍外还有其他方法,笔者未就具体方法进行一一赘述,只以常见常用的方法为指引,希望以此教学实践提高学生的计算能力。
编辑 郭小琴endprint