细胞外囊泡与缺血性卒中
2018-01-12蔡晋资文杰刘新峰
蔡晋,资文杰,刘新峰
世界卫生组织统计,2002年全球范围内约有550万人因罹患卒中而死亡,卒中目前已成为人类死亡的第二大原因,且发病率及死亡率仍呈不断增长的趋势。2011年,中国国家卒中登记数据库的流行病学分析结果显示,我国卒中的年龄标化发病率位列全球第一,超过336/10万。每年因卒中死亡的人数达到170万,高居全国国民死亡原因的首位,且幸存患者中约1/6在5年内再发卒中[1]。卒中正以其高发病率、高致残率、高死亡率以及高复发率成为影响国计民生的重大公共卫生问题,给社会、家庭、患者带来了巨大的负担和痛苦[2]。
卒中俗称“中风”,按病理性质分为缺血性卒中与出血性卒中,是由各种因素引起颅内动脉狭窄、闭塞或破裂,造成脑血液循环障碍,脑神经细胞损伤或死亡,导致一过性或永久性的运动、感觉或认知功能等障碍。缺血性卒中又称为脑梗死,通常是指由于供应脑部血液的动脉出现粥样硬化和血栓形成,使管腔狭窄甚至闭塞,导致急性脑供血不足而发病。也有因固体、液体或气体沿血液循环进入脑动脉或供应脑血液循环的颈部动脉,造成血流阻断或血流量骤减而产生相应支配区域的脑组织软化、坏死[3]。根据经典低分子肝素治疗急性卒中试验(Trial of Org 10 172 in Acute Stroke Treatment,TOAST)分型,缺血性卒中可分为大动脉粥样硬化型、心源性栓塞型、小动脉闭塞型或腔隙性脑梗死,其他原因所致的缺血性卒中和不明原因的缺血性卒中。目前,缺血性卒中的发生、发展机制并不十分明确,临床诊治仍面临诸多难题。最新的研究发现细胞外囊泡(extracellular vesicle,EV)介导细胞间通讯在动脉粥样硬化形成中发挥了重要作用,也逐步成为缺血性卒中发生、发展以及治疗应用等研究的热点。
EV是一种大多数细胞在生理和病理状态下都会分泌的直径为30~1000 nm的微小囊泡的总称,包括外泌体和脱落囊泡等[4]。外泌体通过多泡体(multivesicular bodies,MVBs)以胞吐的形式释放到细胞外,直径为50~100 nm,密度为1.10~1.21 g/ml,其生成受神经酰胺和ALIX(ALG-2 interacting protein X)蛋白的调节。脱落囊泡以“出芽”的方式产生,直径为100 nm~1 μm,其生成与细胞内钙离子及细胞膜表面磷脂酰丝氨酸表达密切相关[5]。EV属于母体细胞来源的亚细胞结构,其生成、大小、内含物和生物学功能等在不同细胞间均存在异质性[6]。EV包含多种蛋白质、RNA和DNA等,表面还携带母体细胞来源的跨膜蛋白、脂质等,这些均有利于其在循环中与受体细胞黏附、融合,交换内含物参与细胞间通讯并调节受体细胞的生物学功能[7-11]。此外,EV还参与细胞凋亡、免疫炎症反应、血管新生、血栓形成等病理生理过程[12]。在疾病状态下,EV的细胞起源、释放数量、内含物等均与疾病的发生发展相关[13-14]。研究发现,在动脉粥样硬化的形成过程中,EV介导的细胞间通讯扮演了愈发重要的角色[15-16]。越来越多的研究表明神经元与神经胶质细胞来源的EV,如从脑脊液分离的EV,这些EV转运相关蛋白参与神经再生、脑血管再生以及少突胶质细胞再生,与卒中后脑功能重塑密切相关,并逐步成为缺血性卒中发生、发展以及治疗应用等研究的热点[17]。本文就神经系统EV内含物的分子组成与生物学功能在缺血性卒中发生、发展中的作用综述如下。
1 EV与脑血管再生
脑血管内皮细胞EV内含转铁蛋白受体、胰岛素受体等生物大分子,参与构成血脑屏障[18]。同时,在脂多糖和细胞因子刺激下,脑血管内皮细胞EV转运微小RNA(microRNA,miRNA)至脑血管周细胞,并增加受体周细胞血管内皮生长因子B(vascular endothelial growth factor B,VEGF-B)信使RNA(messenger RNA,mRNA)和蛋白质的表达,从而促进新生血管形成[19-20]。另外,EV介导的脑血管内皮细胞与周细胞之间的水平转移还通过Notch信号通路维持血脑屏障的完整性,并促进血管再生。表达于脑血管内皮细胞的Notch配体,Deltalike 4蛋白,能够通过EV转移至周细胞,进而与周细胞上的Notch3受体结合,激活Notch信号通路,保持脑血管结构的稳态[21-22]。VEGF信号通路与Notch信号通路通过EV共同参与了脑血管内皮细胞与周细胞之间的细胞间通讯,维持血脑屏障完整并促进血管再生。此外,内皮祖细胞来源的EV转移miRNA-126、miRNA-296至内皮细胞,激活受体细胞磷脂酰肌醇3-激酶/蛋白激酶B(phosphatidyl inositol 3-kinase/protein kinase B,PI3K/Akt)信号通路,促进血管再生[23-24]。胶质母细胞瘤EV转运促血管生成的蛋白质、mRNA以及miRNA至脑血管内皮细胞,进而参与脑血管再生[25]。
2 EV与神经再生
成年哺乳动物神经干细胞主要分布于脑室带、脑室下带和海马的干细胞龛,它们与邻近血管、细胞及脑脊液相互联系,交换信息[26]。脑脊液中EV通过细胞间通讯调节神经干细胞的增殖、分化、免疫等功能[27-28]。来源于人和大鼠脑脊液的EV内的miRNA和蛋白质高度同源,且与胰岛素样生长因子信号通路密切相关[27]。胚胎神经干细胞与脑脊液EV共培养后,可以激活神经干细胞胰岛素样生长因子/哺乳动物西罗莫司靶蛋白信号通路,并刺激其增殖[27]。在促炎因子的作用下,来源于成年小鼠神经干细胞龛的神经干细胞分泌的EV所富集的mRNA,编码γ-干扰素信号通路蛋白。EV相关的γ干扰素与靶细胞的γ干扰素受体1结合,进一步激活信号转导与转录激活子1信号通路,参与卒中后的免疫反应[28]。
3 EV与神经重塑
神经元与胶质细胞相互协调使轴突生长与髓鞘发育同步,最新的研究表明神经元与胶质细胞分泌的EV参与了此过程[29-30]。神经元分泌的EV内含α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(α-amino-3-hydroxy-5-methyl-4-isoxazole propionate,AMPA)受体,而去极化神经元轴突分泌的EV内含微管相关蛋白(microtubule associated protein,MAP)1B,以及靶基因参与轴突重塑的miRNA[31-32]。AMPA受体和MAP1B是突触与树突重塑以及轴突出芽的核心调节因子,激活AMPA受体促进卒中后运动功能恢复[31-33]。视黄酸受体β2拮抗剂刺激后,神经元分泌的EV对神经元与星形胶质细胞产生双重效应,刺激轴突的生长。视黄酸受体β2拮抗剂使神经元通过释放富集第10号染色体同源丢失性磷酸酶-张力蛋白基因(phosphatase and tensin homolog deleted on chromosome ten,PTEN)蛋白的EV使PTEN信号通路失活,同时,这些富集PTEN的EV转运PTEN蛋白至星形胶质细胞,并抑制其增殖[34]。抑制神经元PTEN信号通路,以及减少星形胶质细胞瘢痕形成促进成年脊髓损伤或卒中后中枢神经系统轴突出芽[35]。上述研究表明,神经元EV在神经元之间以及神经元与星形胶质细胞之间通过突触传递介导突触与轴突重塑,参与脑损伤后突触与轴突重构。
4 EV与认知障碍
卒中加速认知障碍和老年性痴呆的进展,以脑β淀粉样蛋白沉积为主要特征。β淀粉样蛋白生成后分泌至细胞外,其生成与降解失衡导致β淀粉样蛋白在脑沉积[36]。研究报道,体外培养的神经母细胞瘤细胞分泌的EV内含β淀粉样蛋白,小胶质细胞内化神经元EV后,增强了其摄取和清除β淀粉样蛋白的能力[37]。此外,他汀类药物(如辛伐他汀)刺激小胶质细胞分泌的EV富集了胰岛素降解酶,该酶降解β淀粉样蛋白,促进清除细胞外β淀粉样蛋白[38]。这些研究表明,小胶质细胞既能内吞其他细胞来源的EV,在他汀作用下又主动分泌自身EV,共同参与清除脑β淀粉样蛋白。卒中和创伤性脑损伤后,辛伐他汀参与轴突出芽、自发物体识别与时序记忆等过程,促进缺血性脑组织修复[39-40]。虽然如此,脑损伤后,他汀治疗是否改变小胶质细胞EV降解β淀粉样蛋白的能力仍需进一步的研究证实。
5 展望
综上所述,缺血性卒中后神经干细胞、神经元、神经胶质细胞、脑血管内皮细胞以及周细胞等脑实质细胞分泌的EV内含物,包括蛋白质、RNA等生物大分子的种类和含量,较非缺血状态均有明显变化。这些生物大分子可以通过EV水平转移至靶细胞,并影响受体细胞的生物学功能,在缺血性卒中的发生、发展以及脑组织重塑中均扮演了重要角色。当然,EV与缺血性卒中的研究仍然面临诸多难题和挑战,一是脑实质细胞缺血后分泌EV的多少及其内含关键分子水平的内在调节机制不明;二是针对某特定细胞来源的EV,其潜在的靶向细胞辨识不清;三是EV转移内含关键分子至靶向受体细胞后,内源基因和蛋白质表达的调控机制仍需进一步厘清。虽然如此,已有天然提取或人工干预获得的EV用于卒中后治疗的研究尝试[41-43],上述难题的解决必将使治疗更加精准,疗效愈发显著。
参考文献
[1]LIU L,WANG D,WONG K S,et al. Stroke and stroke care in China:huge burden,significant workload,and a national priority[J]. Stroke,2011,42(12):3651-3654.
[2]MOZAFFARIAN D,BENJAMIN E J,GO A S,et al. Heart disease and stroke statistics--2015 update:a report from the American Heart Association[J/OL].Circulation,2015,131(4):e29-e322. https://doi.org/10.1161/CIR.0000000000000152
[3]ADAMS H P J R,BENDIXEN B H,KAPPELLE L J,et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment[J]. Stroke,1993,24(1):35-41.
[4]COCUCCI E,RACCHETTI G,MELDOLESI J.Shedding microvesicles:artefacts no more[J]. Trends Cell Biol,2009,19(2):43-51.
[5]CAI J,WU G,JOSE P A,et al. Functional transferred DNA within extracellular vesicles[J]. Exp Cell Res,2016,349(1):179-183.
[6]NIEUWLAND R,STURK A. Why do cells release vesicles?[J]. Thromb Res,2010,125(Suppl 1):S49-51.
[7]CAI J,HAN Y,REN H,et al. Extracellular vesiclemediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells[J]. J Mol Cell Biol,2013,5(4):227-238.
[8]CAI J,WU G,TAN X,et al. Transferred BCR/ABL DNA from K562 extracellular vesicles causes chronic myeloid leukemia in immunodeficient mice[J/OL]. PLoS One,2014,9(8):e105200. https://doi.org/10.1371/journal.pone.0105200
[9]CAI J,GUAN W,TAN X,et al. SRY gene transferred by extracellular vesicles accelerates atherosclerosis by promotion of leucocyte adherence to endothelial cells[J]. Clin Sci(Lond),2015,129(3):259-269.
[10]WALDENSTRÖM A,GENNEBÄCK N,HELLMAN U,et al. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells[J/OL]. PLoS One,2012,7(4):e34653.https://doi. org/10. 1371/journal. pone. 0034653
[11]ZEN K,ZHANG C Y. Circulating microRNAs:a novel class of biomarkers to diagnose and monitor human cancers[J]. Med Res Rev,2012,32(2):326-348.
[12]MINEO M,GARFIELD S H,TAVERNA S,et al.Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA[J].Blood,2007,110(7):2440-2448.fashion[J]. Angiogenesis,2012,15(1):33-45.
[13]WANG H,YAN H M,TANG M X,et al. Increased serum levels of microvesicles in nonvalvular atrial fibrillation determinated by ELISA using a specific monoclonal antibody AD-1[J]. Clin Chim Acta,2010,411(21-22):1700-1704.
[14]MINCHEVA-NILSSON L,BARANOV V. The role of placental exosomes in reproduction[J]. Am J Reprod Immunol,2010,63(6):520-533.
[15]HERGENREIDER E,HEYDT S,TRÉGUER K,et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs[J]. Nat Cell Biol,2012,14(3):249-256.
[16]ZHANG Y,LIU D,CHEN X,et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration[J]. Mol Cell,2010,39(1):133-144.
[17]LAI C P,BREAKEFIELD X O. Role of exosomes/microvesicles in the nervous system and use in emerging therapies[J/OL]. Front Physiol,2012,3:228. https://doi.org/10.3389/fphys.2012.00228
[18]HAQQANI A S,DELANEY C E,TREMBLAY T L,et al. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells[J]. Fluids Barriers CNS,2013,10(1):4.
[19]YAMAMOTO S,NIIDA S,AZUMA E,et al.Inflammation-induced endothelial cell-derived extracellular vesicles modulate the cellular status of pericytes[J/OL]. Sci Rep,2015,5:8505. https://www.nature.com/articles/srep08505.DOI:10.1038/srep08505
[20]TAKAHASHI H,SHIBUYA M. The vascular endothelial growth factor(VEGF)/VEGF receptor system and its role under physiological and pathological conditions[J]. Clin Sci(Lond),2005,109(3):227-241.
[21]WINKLER E A,BELL R D,ZLOKOVIC B V.Central nervous system pericytes in health and disease[J]. Nat Neurosci,2011,14(11):1398-1405.
[22]SCHULZ G B,WIELAND E,WÜSTEHUBELAUSCH J,et al. Cerebral cavernous malformation-1 protein controls DLL4-Notch3 signaling between the endothelium and pericytes[J]. Stroke,2015,46(5):1337-1343.
[23]CANTALUPPI V,BIANCONE L,FIGLIOLINI F,et al. Microvesicles derived from endothelial progenitor cells enhance neoangiogenesis of human pancreatic islets[J]. Cell Transplant,2012,21(6):1305-1320.
[24]DEREGIBUS M C,CANTALUPPI V,CALOGERO R,et al. Endothelial progenitor cell derived
[25]SKOG J,WÜRDINGER T,VAN RIJN S,et al.Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers[J]. Nat Cell Biol,2008,10(12):1470-1476.
[26]IHRIE R A,ALVAREZ-BUYLLA A. Lake-front property:a unique germinal niche by the lateral ventricles of the adult brain[J]. Neuron,2011,70(4):674-686.
[27]DOEPPNER T R,HERZ J,GÖRGENS A,et al. Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression[J]. Stem Cells Transl Med,2015,4(10):1131-1143.
[28]COSSETTI C,IRACI N,MERCER T R,et al.Extracellular vesicles from neural stem cells transfer IFN-γ via Ifngr1 to activate Stat1 signaling in target cells[J]. Mol Cell,2014,56(2):193-204.
[29]HIGA G S,DE SOUSA E,WALTER L T,et al.MicroRNAs in neuronal communication[J]. Mol Neurobiol,2014,49(3):1309-1326.
[30]KAWIKOVA I,ASKENASE P W. Diagnostic and therapeutic potentials of exosomes in CNS diseases[J/OL]. Brain Res,2015,1617:63-71. https://doi.org/10.1016/j.brainres.2014.09.070
[31]LACHENAL G,PERNET-GALLAY K,CHIVET M,et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity[J]. Mol Cell Neurosci,2011,46(2):409-418.
[32]GOLDIE B J,DUN M D,LIN M,et al. Activityassociated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons[J].Nucleic Acids Res,2014,42(14):9195-9208.
[33]CLARKSON A N,OVERMAN J J,ZHONG S,et al. AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke[J]. J Neurosci,2011,31(10):3766-3775.
[34]GONCALVES M B,MALMQVIST T,CLARKE E,et al. Neuronal RARβ signaling modulates PTEN activity directly in neurons and via exosome transfer in astrocytes to prevent glial scar formation and induce spinal cord regeneration[J]. J Neurosci,2015,35(47):15731-15745.
[35]SHEN L H,LI Y,GAO Q,et al. Down-regulation of neurocan expression in reactive astrocytes promotes axonal regeneration and facilitates the neurorestorative effects of bone marrow stromal cells in the ischemic rat brain[J]. Glia,2008,56(16):1747-1754.
[36]QUERFURTH H W,LAFERLA F M. Alzheimer's disease[J]. N Engl J Med,2010,362(4):329-344.
[37]YUYAMA K,SUN H,MITSUTAKE S,et al.Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia[J]. J Biol Chem,2012,287(14):10977-10989.
[38]TAMBOLI I Y,BARTH E,CHRISTIAN L,et al. Statins promote the degradation of extracellular amyloid {beta}-peptide by microglia via stimulation of exosome-associated insulin-degrading enzyme(IDE)secretion[J]. J Biol Chem,2010,285(48):37405-37414.
[39]DARWISH H,MAHMOOD A,SCHALLERT T,et al. Simvastatin and environmental enrichment effect on recognition and temporal order memory after mild-to-moderate traumatic brain injury[J]. Brain Inj,2014,28(2):211-226.
[40]CHEN J,ZHANG Z G,LI Y,et al. Statins induce angiogenesis,neurogenesis,and synaptogenesis after stroke[J]. Ann Neurol,2003,53(6):743-751.
[41]XIN H,LI Y,CHOPP M. Exosomes/miRNAs as mediating cell-based therapy of stroke[J/OL]. Front Cell Neurosci,2014,8:377. https://doi.org/10.3389/fncel.2014.00377.
[42]XIN H,LI Y,LIU Z,et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles[J]. Stem Cells,2013,31(12):2737-2746.
[43]XIN H,KATAKOWSKI M,WANG F,et al.MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats[J]. Stroke,2017,48(3):747-753.