寄主诱导的基因沉默在改良作物抗病虫性方面的应用
2018-01-09刘友梅薛敏峰史文琦黄薇袁斌
刘友梅+薛敏峰+史文琦+黄薇+袁斌
摘要:根据RNA干扰(RNA interference,RNAi)原理,在生物体内表达双链RNA(dsRNA)可以高效沉默生物体内基因的表达。在寄主中形成病原真菌和昆虫特异基因的小RNA会进入其体内从而产生寄主诱导的基因沉默(Host-induced gene silencing,HIGS)。病虫害对全球粮食安全构成极大的威胁,利用HIGS技术为提高农作物抗病虫性提供了有效的途径。综述了HIGS技术在提高农作物抗病虫性中的应用,总结了沉默信号在寄主与病虫间的可能的传递方式以及提出该技术存在的优缺点。
关键词:RNA干扰(RNAi);基因沉默;农作物;病害;虫害
中图分类号:S332.2 文献标识码:A 文章编号:0439-8114(2017)23-4454-03
DOI:10.14088/j.cnki.issn0439-8114.2017.23.006
The Application of Host-induced Gene Silencing in Improving the Resistance
of Crop to Disease and Insect
LIU You-mei,XUE Min-feng,SHI Wen-qi,HUANG Wei,YUAN Bin
(Institute of Plant Protection and Clay Fertilizer,Hubei Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management Crops in Central China, Ministry of Agriculture. P. R. China/Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control,
Wuhan 430064, China)
Abstract: According to the principle of RNA interference(RNAi),the expression of double stranded RNA(dsRNA) in vivo can efficiently silence gene expression in organism. A small RNA that forms pathogenic fungi and insect specific genes in the host will enter its body and produce host-induced gene silencing(HIGS). Crop diseases and insect pests pose a great threat to global food security,and the use of HIGS technology provides an effective way to improve crop disease and insect resistance. This paper summarized the application of HIGS technology on improving crop disease resistance and insect pests,and the possible transfer mode of silent signal between host and insect pest,and put forward the advantages and disadvantages of this technology.
Key words: RNA interference(RNAi); host-induced gene silencing; crop; disease; pest
RNA干扰(RNA interference,RNAi)是一种高度保守且普遍存在的基因表达调控方式。它是由一种由双链RNA(Double strand RNA)引起的基因沉默。RNA沉默不仅能够阻止外源核苷酸的入侵,而且调控生物体的发育进程[1,2]。简单的说,特异的dsRNA形成siRNA导致特定的mRNA降解,从而导致特定基因表达沉默。依据这个原理开发出了RNAi技术用于研究基因的功能。近年来,RNAi技术广泛应用于基因功能的研究,并且在多种农作物中用于提高作物对生物或非生物胁迫的抵抗能力[3]。研究表明,体外施加dsRNA也能够诱导生物体内目标基因产生基因沉默[4]。在寄主作物体内表达靶标生物特异基因的dsRNA则能够帮助寄主免受被捕食或侵染。这种在寄主细胞中表达害虫或病原菌基因dsRNA,以提高植物抗病虫性的生物技术被称之为寄主诱导基因沉默(Host-induced gene silencing,HIGS)。与化学防治相比,这种称为寄主诱导基因沉默的生物技術对靶标生物具有高度特异性。
随着世界人口数量的增长,粮食需求也成倍增长,病虫害是满足粮食需求所面临的主要挑战。随着dsRNA在昆虫体内的吸收和扩展机制被阐明,从而使以RNAi为基础的植物生物技术成为一种控制病虫害的可行策略[5]。本文围绕HIGS在病虫害中已有的研究成果,论述其在生产上应用的可能和前景。
1 RNA沉默信号在寄主与靶标生物间的传递
HIGS要能够取得抑制靶标生物目标基因的效果, 外源dsRNA必须进入靶标生物体内。研究表明,昆虫吸收dsRNA主要有3条途径:一是以SID-1蛋白和SID-2蛋白为基础的跨膜通道吸收途径。首先依赖SID-2蛋白将dsRNA从外环境运至体内,再由SID-1蛋白将dsRNA分子传递到整个昆虫体内。二是选择性内吞作用吸收途径。三是依赖昆虫免疫作用的吸收途径[6]。endprint
当将植物寄生线虫被浸润在siRNA/dsRNA溶液中,siRNA/dsRNA可通过线虫的分泌腺、排泄器官或受化学兴奋剂刺激的咽部进入线虫体内,从而诱导靶基因发生沉默,进一步影响线虫的生长和发育。近年来,在活体条件下植物寄生线虫RNAi信号的传递方式也被大量研究,植物寄生线虫主要通过取食点摄取植物传递的siRNA或未被加工的dsRNA[7]。
小RNAs从植物细胞进入真菌细胞的转移途径尚不十分明确。植物与真菌的相互识别主要发生在植物与真菌的交界面上。真菌营养物质的吸收、酶的转移、分泌毒素进入植物细胞、真菌效应蛋白和植物病程相关蛋白的分泌以及细胞表面感受器的相互识别均发生在这个界面上[8,9]。当植物遭受病原菌攻击时,植物拥有专门的分泌系统将防卫分子传递到被攻击的位置。而这种分泌途径调控免疫反应所需的低分子质量化合物的运输,例如细胞表面蛋白,它们通过细胞的外吐作用到达作用位点[10]。植物能够活跃的输出各类分子物质到植物和真菌界面,可能包括siRNAs。siRNAs存在的可能传递途径包括通过胞外/胞吞作用在植物和真菌界面进行双向传递;当真菌获取营养物时随着特定的转运蛋白进行真菌细胞;通过各种跨膜通道进行被動穿越[11]。
2 HIGS在作物虫害防治中的应用
农作物病虫害造成巨大的损失,其中动物虫害每年造成约15%~20%的产量损失[12]。长期使用化学农药防治害虫,有超过500种昆虫和螨类对一种以上的杀虫剂存在耐药性[13]。这意味着需要有新的方法来防治农作物虫害。
棉铃虫是世界性的害虫之一,能够为害超过360种植物。通过HIGS策略增强昆虫对植物毒素的敏感性,从而间接抑制昆虫的取食。棉铃虫细胞色素P450基因在棉铃虫幼虫的中肠中表达,其对棉花中的棉子酚具有耐受作用。Mao等[14]通过构造出能够表达棉铃虫P450基因dsRNA的棉花,使棉铃虫体内的P450基因表达量下降,从而减低其对棉酚的耐受性,最终导致其生长缓慢甚至死亡。来自棉铃虫的其他细胞色素P450基因已被作为HIGS的靶点用于防治那些对拟除虫菊酯类杀虫剂具有抗性的棉铃虫,同时解决了拟除虫菊酯在田间的滥用问题。表达棉铃虫CYP9A14基因dsRNA的拟南芥能够克服那些对溴氰菊酯具有抗性的棉铃虫幼虫的取食[15]。Mamta等[16]以棉铃虫的几丁质酶基因(HaCHI)为靶标基因,构造出HaCHI-RNAi烟草和土豆,实现了对棉铃虫的有效控制。Luo等[17]以影响黑盲蝽卵巢发育的AsFAR基因作为靶标,利用农杆菌介导的遗传转化得到了高量表达靶标基因dsRNA的转基因棉花,创制的转基因棉花对中黑盲蝽表现出较强的抵抗能力,降低了对棉花危害程度。
3 HIGS在作物病害防治中的应用
近年来,已有多个报道表明利用HIGS技术可以实现对真菌病害控制的研究。Panstruga[18]研究表明,某些植物病原真菌与寄主间通过吸器互作促进了病原菌对dsRNA的吸收或siRNA从寄主植物细胞进入真菌体内,使寄主植物产生以RNA沉默为基础的抗性。Nowara等[19]将小麦白粉病菌效应子基因Avra10作为靶标基因,以不含抗性基因Mla10的小麦品种Pallas作为转化亲本,创制出表达Avra10基因dsRNA的转基因小麦品种。该品种能使小麦白粉病菌在侵染时的吸器数目大幅减少,可以显著提高感病品种的抗性。Koch等[20]研究表明,沉默真菌麦角固醇生物合成必需基因CYP51是限制禾谷镰刀菌生长和发育最为有效的方法。将禾谷镰刀菌参与合成的CYP51A、CYP51B和CYP51C 3个基因的片段构建成嵌合的长791个核苷酸dsRNA(CYP3RNA)进行生物测定,CYP3RNA对禾谷镰刀菌的生长具有抑制作用,且CYP3RNA在拟南芥和大麦中表达使易感病植株提高了对真菌侵染的抗性[21]。这些结果均证实了真菌CYP51基因的寄主诱导沉默是抑制菌丝体形成和侵染植物的有效方式。Govindarajulu等[22]以莴苣霜霉病菌的HAM34和CES1基因为目标基因,构造出能够专门抑制上述基因表达的转基因莴苣品种,从而大大抑制莴苣霜霉病菌的生长和孢子形成。Zhang等[23]成功利用HIGS技术实现了对棉花黄萎病的防控,以真菌疏水蛋白VDH1编码基因作为靶标分子,构建获得RNAi(Vdh1i)转基因棉花,通过致病性检测表明该转基因棉花对棉花黄萎病表现出较高的抗性。
植物寄生线虫在2003年对全球作物造成严重损失[24],绝大部分为害是由根结线虫和孢囊线虫引起的。Yadav等[25]利用南方根结线虫剪接因子和整合酶基因创制的dsRNA转基因烟草品种;Charlton等[26]将两个分别表达Mispc3和Miduox基因dsRNAs的转基因拟南芥品种进行了杂交,获得了能够同时表达Mispc3和Miduox基因dsRNAs的转基因拟南芥新品种;Niu等[27]以南方根结线虫的Rpn7基因作为靶基因,构造出能够表达出南方根结线虫Rpn7基因dsRNA的菊科植物。以上利用dsRNA创制的转基因植株都显著提高对目标病虫的抗性。
4 HIGS在作物病虫害防治中的利弊
HIGS 技术在应用中的优点:对于尚未克隆到抗病虫基因的农作物,利用HIGS技术可以加速培育出抗病虫的农作物;若选取的靶基因序列在多种害虫或病原菌中具有高度同源性,则改造出的农作物可展示出抗多种虫害或病害的特点;与化学防治对环境造成巨大的污染相比,HIGS对环境的副作用最小。
HIGS技术在应用中的不足:HIGS选取靶基因中的一段基因用于沉默,这有可能会造成其他同源的非目标基因的沉默;HIGS载体在寄主基因组上是随机插入的,当插入到寄主某个关键基因中时,可能会造成寄主表型发生改变;HIGS不仅需要构建HIGS载体,而且需要较成熟的作物转化体系,因此,并不是所有的寄主病原互作系统均能达到理想的效果[28]。endprint
选择合适的靶基因是HIGS能够成功的关键步骤,而致死表型基因被证实能够最有效的用于HIGS。而通过cDNA文库和利用下一代测序技术(如转录组测序)筛选到的显著差异表达水平基因也可作为合适的靶基因。需值得注意的是,目标基因的dsRNA和相應的siRNA不会发生非靶效应,即对非目标寄主、哺乳动物和寄主植物的生理不会产生不良影响。综上所述,HIGS技术的应用在创制作物抗病虫新种质上有着广阔的应用前景,使得农作物获得持久抗病虫性成为可能[29]。
参考文献:
[1] SIDAHMED A M E,WILKIE B. Endogenous antiviral mechanisms of RNA interference:A comparative biology perspective[J].Methods in Molecular Biology,2010,623:3-19.
[2] VOINNET O. Induction and suppression of RNA silencing: insights from viral infections[J].Nature Reviews Genetics,2005, 6(3):206-220.
[3] 张河山,胡亚亚,张 娜,等.寄主诱导的基因沉默(HIGS)技术研究进展[J].农业生物技术学报,2013,21(5):603-620.
[4] FIRE A,XU S Q,MONTGOMERY M K,et al. Potent and specific genetic interference mediated by double-stranded RNA in Caenorhabditis elegans[M].Nature,1998:806-811.
[5] TOMOYASU Y,MILLER S C,TOMITA S,et al. Exploring systemic RNA interference in insects:a genome-wide survey for RNAi genes in Tribolium[J].Genome Biology,2008,9(1):R10.
[6] HUVENNE H,SMAGGHE G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control:A review[J].Journal of Insect Physiology,2010,56(3):227-235.
[7] LILLEY C J,DAVIES L J,URWIN P E. RNA interference in plant parasitic nematodes:A summary of the current status[J].Parasitology,2012,139(5):630-640.
[8] LU Y J,SEBASTIAN SCHORNACK,SPALLEK T,et al. Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking[J].Cellular Microbiology,2012,14(5):682-697.
[9] MICALI C O,ULLA N,DORIT G,et al. Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria[J].Cellular Microbiology,2011, 13(2):210-226.
[10] BEDNAREK P,KWON C,SCHULZE-LEFERT P,et al. Not a peripheral issue:Secretion in plant-microbe interactions[J].Current Opinion in Plant Biology,2010,13(4):378-387.
[11] CASADEVALL A,NOSANCHUK J D,WILLIAMSON P,et al. Vesicular transport across the fungal cell wall[J].Trends in Microbiology,2009,17(4):158-162.
[12] OERKE E C. Crop losses to pests[J].Journal of Agricultural Science,2006,144(144):31-43.
[13] HOGSETTE,JEROME A. United states department of agriculture-agricultural research service research on managing insect resistance to insecticides[J].Pest Management Science,2003, 59(6-7):835-841.
[14] MAO Y B,CAI W J,WANG J W,et al. Silencing a cotton bollworm P450 mono oxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol[J].Nature Biotechnology,2007,25(11):1307-1313.endprint
[15] TAO X,XUE X,HUANG Y,et al. Gossypol-enhanced P450 gene pool contributes to cotton bollworm tolerance to a pyrethroid insecticide[J].Molecular Ecology,2012,21(17):4371-4385.
[16] MAMTA,REDDY K R,RAJAM M V. Targeting chitinase gene of Helicoverpaarmigera by host-induced RNA interference confers insect resistance in tobacco and tomato[J].Plant Molecular Biology,2015,90(3):1-12.
[17] LUO J,LIANG S,LI J,et al. A transgenic strategy for controlling plant bugs (Adelphocoris suturalis) through expression of double-stranded RNA homologous to fatty acyl-coenzyme:A reductase in cotton[J].New Phytol,2017,215(3):1173-1185.
[18] PANSTRUGA R. Establishing compatibility between plants and obligate biotrophic pathogens[J].Current Opinion in Plant Biology,2003,6(4):320-326.
[19] NOWARA D,GAY A,LACOMME C,et al.HIGS:Host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeriagraminis[J].Plant Cell,2010,22(9):3130-3141.
[20] KOCH A,KOGEL K. New wind in the sails:Improving the agronomic value of crop plants through RNAi-mediated gene silencing[J].Plant Biotechnology Journal,2014,12(7):821-831.
[21] KOCH A,KUMAR N,WEBER L,et al. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to Fusarium species[J].Proceedings of the National Academy of Sciences,2013,110(48):19324-19329.
[22] GOVINDARAJULU M,EPSTEIN L,WROBLEWSKI T,et al. Host-induced gene silencing inhibits the biotrophic pathogen causing downy mildew of lettuce[J].Plant Biotechnology Journal,2014,13(7):875-883.
[23] ZHANG T,JIN Y,ZHAO J H,et al. Host-induced gene silencing of target gene in fungal cells confers effective resistance to cotton wilt disease pathogen Verticilliumdahliae[J].Molecular Plant,2016,9(6):939-942.
[24] CHITWOOD,DAVID J. Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture-Agricultural Research Service[J].Pest Management Science,2003,59(59):748-753.
[25] YADAV B C,VELUTHAMBI K,SUBRAMANIAM K. Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection[J].Molecular & Biochemical Parasitology,2006,148(2):219-222.
[26] CHARLTON W L,HAREL H Y M,BAKHETIA M,et al. Additive effects of plant expressed double-stranded RNAs on root-knot nematode development[J].International Journal for Parasitology,2010,40(7):855-864.
[27] NIU J,JIAN H,XU J,et al. RNAi silencing of the Meloidogyne incognita Rpn7 gene reduces nematode parasitic success[J].European Journal of Plant Pathology,2012,134(1):131-144.
[28] YIN C,JURGENSON J E,HULBERT S H. Development of a host-induced RNAi system in the wheat stripe rust fungus Pucciniastriiformis f. sp. tritici[J].Molecular Plant-microbe Interactions,2011,24(5):554-561.
[29] NUNES C C,DEAN R A. Host-induced gene silencing:A tool for understanding fungal host interaction and for developing novel disease control strategies[J].Molecular Plant Pathology,2012,13(5):519-529.endprint