APP下载

红外测温技术在变电运维中的应用

2018-01-05叶晨

中国新技术新产品 2018年22期

叶晨

摘 要:本文首先对红外测温技术进行分析,其次进行红外测技术诊断方法和应用原理的阐述,最后对其应用进行详细研究,从而促进红外测温技术的有效运用。

关键词:红外测温技术;变电运维;应用

中图分类号:TM63 文献标志码:A

社会经济的整个发展过程,电力资源一直属于主要动力能源,尤其是在电力系统持续完善下,其应用范围随之呈现不断扩宽的趋势。在进行电力日常供应时,为了保证变电运维的有效进行,可以通过红外测温技术的应用实现变电系统的全面检测,通过相关科技手段的运用,保证变电运维系统的稳定运行,在提升电力系统故障检测概率的同时,确保我国电力系统维持稳定供电的状态,进而保证电力供电系统的完整性。

1 红外测温技术的浅析

1.1 原理

在对红外测温技术的分析时发现,其主要是利用电力设备热辐射进行,即利用电力设备中热辐射进行图像信号的转换,以温度判断的方式进行设备状态的了解,判断设备是否存在异常情况。红外测温技术基本原理为热成像,因各时段温度存在较大差异,使其以红外检测方式进行设备扫描后,其反馈信息会随之呈现较大差异化,且生成图像各不相同。

1.2 优势

结合红外测温技术优势发现,主要包括原理简单和使用方便等特点,在使用方面,其主要是以设备为基础进行,因设备呈现体积小和轻便的特点,所以,此项技术的应用比较方便,需要停电作业,从而具有较高的工作效率与安全性。如果通信设备相对比较完整,且连接有效,可以直接进行信息转换,通过数字设备进行呈现,进而保证工作效率,其成像原理如图1所示。

2 红外测温技术的诊断方法和应用原理

2.1 诊断方法

在变电运维过程中,对红外测温技术进行应用时,其诊断方法相对比较多样化,具体内容如下:第一,相对温差判断法,如果变电运维设备出现发热情况,需要通过红外测温技术对其温度进行判断,结合方法和标准进行温差值的掌握,从而衡量设备问题。第二,表面温度判断法,对设备的表面温度进行测量时,需要和设备标准温度对比进行,以便于判断其实际温度,从而对设备运行状态进行了解。第三,图谱分析法。在对红外测温技术进行应用后,可以将设备的表面温度进行热谱图的转换,以便于对其进行热谱图的温度分析,并判断设备温度情况。第四,同类比较判断法。变电设备的温度检测过程,对同类设备进行集中比较和分析,可以准确掌握其运行状态。第五,档案分析判断法。对设备日常温度测量数据进行整理,以便于将其装订成册,结合档案与设备温度规律进行判断。

2.2 应用理论

在电力系统运行过程中,变电运维属于其主要部分,使用传统检测方法进行分析后我们发现,人工体感检测方式存在较大危险性,极易发生检测人员的伤亡事件。而红外侧温技术的应用主要是以电力设备运行为主,通过红外磁场的产生,利用系统温度曲线变化进行电力输送的判断,使其传统复杂流程逐渐简化,以此呈现“非体感式”的检验,全面提升其变电运维的完全性。另外,红外测温技术进行应用,不仅可以提升系统故障检验科学性,而且还能促进供电系统发展。

3 红外测温技术在变电运维中的应用

3.1 诊断步骤

针对测温技术在变电运维中的使用,其往往是以故障诊断的方式存在,其步骤如下:一是温度辨别。通过对变电设备运行温度的测定,再融合标准阈值的把控,鉴别变电设备是否处于发热状态。但是在实际情况下,红外线测温技术并非在各类变电设备中均可使用,例如聚焦变电配件,若使用该测温技术,则会在引起点流中断的情况下,使变电系统面临极大的故障损害,对此,若要使用测温技术对设备温度测定,则应避免在变电高峰期施行。二是温度对比。通过对变电设备现有温度的比较,且以横向对比法为参照,对其端点温差予以鉴别,以便能够在掌握设备故障隐患的前提下,减少损失。三是纵向对比。借助各时段变电设备红外图谱,对测温结果、发热倾向予以鉴别,以便能够精准衡量设备缺陷。

3.2 变电检修

首先,隔离开关检修。作为变电运行过程中的核心配件,多面临温度异常的问题,特别是在合闸不到位、电阻值增加等情况下,隔离开关温度会呈现显著攀升的趋势。若长期处于该种状态,则会使隔离开关出现氧化,逐步构成氧化膜,继而在阻滞电流的同时,对变电系统的运行造成威胁。为避免此类现象的出现,则可借助红外线测温技术的使用,用以在定期测定隔离开关温度的情况下,避免设备故障。其次,状态检修。因变电设备种类较多,使之在构造、运维检修等层面上各不相同。为对变电设备状态予以检修,则可在测定其温度的情况下,依据温升局限值、相对温差等标准,对其运行状态予以检测,以便能够精准鉴别变电设备的缺陷程度。再次,电压热性缺陷检修。是由变电系统引起的设备故障,例如内部绝缘异常和电压分布异常等,和电流无任何关联。往往可通过热图谱的使用,将正常图谱、缺陷图谱予以比较,以便可发现设备异常情况。最后,线夹检测。它是变电系统的组成核心,若滋生发热现象,则必然会对变电系统的运行状态造成威胁。而有效的红外线测温技术可及时发现线夹温度异常,不仅可预防其相关问题出现,还可减少其对变电系统的威胁。

3.3 电流传输检测

电力设备运行状态下,在对红外测温技术进行应用时,电荷运动会出现红外光波,以此实现系统运行情况的检测。在变电运维过程中对红外测温技术进行应用,应该利用不同时间的信息内容,对电流传输情况进行判断,如电流传输稳定性等。当电流传输速率相对较慢时,会呈现较强的电流传输性,红外光波的波动频率也会相对较低;反之电流传输的变化情况,同样会影响红外光波的波动频率,以此实现变电运维的有效检测。

3.4 故障排除技术

变电运维中应用红外测温技术,可以保证电力供应实现线路检测的智能化,通过红外光谱对其系统予以分析,当光谱波段出现异常,需要系统进行光波段的初级检验,并对此段电流传输进行阻断,使其电流科学地划分至其他电流系统,若是红外测温技术和变电运维灵敏度低,则系统会自动做出警报,以此进行电力系统维护和管理。

结语

通过对红外测温技术进行分析发现,为了将其合理地应用于变电运维,首先需要对此项技术进行全面分析,在保证其方便和各项优势的同时,全面发挥其重要作用。在对红外测温技术进行应用时,通常是以变电运维日常检修和故障检修等为主,与此同时,还应该对环境温度和负载电流等进行特别注意,即红外測温技术具备局限性特征,需要在综合分析和考虑的基础上进行此项技术的应用,以此发挥其在变电运维中的重要作用,促进其运维系统的稳定运行。

参考文献

[1]王瑾瑜.红外测温技术在变电运维中的应用研究[J].企业技术开发,2016,35(6):37-38.

[2]赵薇.红外测温技术在变电运维中的应用分析[J].中国新技术新产品,2017(16):62-63.