脉冲YAG激光清洗轮胎模具的实验研究
2018-01-02张自豪余晓畅陈培锋
张自豪,余晓畅,王 英,陈培锋*
(1.华中科技大学 光学与电子信息学院,武汉 430074;2.武汉市杰都易光电科技有限公司,武汉 430014)
脉冲YAG激光清洗轮胎模具的实验研究
张自豪1,2,余晓畅1,2,王 英1,陈培锋1*
(1.华中科技大学 光学与电子信息学院,武汉 430074;2.武汉市杰都易光电科技有限公司,武汉 430014)
为了获得激光清洗轮胎模具的工艺参量,采用自主研制的平均功率达250W的脉冲式YAG激光清洗设备开展了轮胎模具激光清洗实验研究。取得了不同激光参量对轮胎模具清洗效果的实验数据,并研究了激光峰值功率、能量密度等参量与轮胎模具清洗速度、清洗效果的关系。结果表明,清洗轮胎模具脉冲YAG激光比CO2激光更高效;轮胎模具清洗的激光能量密度阈值约为250mJ/mm2,提高激光峰值功率和平均功率能提高清洗速度和清洁效果。此结果为激光清洗设备的研究提供了参考。
激光技术;激光清洗;轮胎模具;YAG激光
引 言
常见的工业清洗方式有化学清洗和机械清洗等方式,都不可避免地会出现环境污染,或者会对需要清洗的零件造成损伤。随着现代社会环保要求日趋严格、加工精度越来越高,工业清洗领域亟需一种环保清洁、精密的新型清洗方式。激光清洗具有无研磨、非接触、适用于各种材质的物体等清洗特点,被认为是最可靠、最有效的解决办法。
作为一种新型清洗方式,激光清洗已被证实应用于诸多领域[1],例如激光清洗细微颗粒[2-3]、清洗K9玻璃表面的SiO2颗粒[4]、清除微电子元件上的微小颗粒[5]。国内外开展了众多关于激光脱漆的研究[5-12]。激光清洗无接触的特点保证了激光清洗对精密部件或物品精细部位清洗的安全性,可以维持其精度,特别适合文物和艺术品的清洗[13-16]。除此以外,激光清洗技术在城市涂鸦清除等日常使用中也逐渐得到认可[17]。
模具清洗是轮胎制造业不可避免的一道工序,直接影响到轮胎成型后的质量等级[18]。目前我国轮胎制造企业采用的模具清洗方式主要有喷砂清洗、干冰清洗,只有少部分外资企业(米其林、马牌轮胎、优科豪马、韩泰等)采用激光清洗。
目前大多数厂家都没有激光清洗设备,主要原因是能够用于轮胎行业的大功率激光清洗机目前只有德国CleanLaser一家供货商,垄断优势导致200W的激光清洗设备高达200万元/台。国内开发的激光清洗机大都基于小功率的光纤激光器,功率往往只有50W~100W,难以满足轮胎模具清洗的场合。
本文中开发了一台半导体抽运固体激光器(diode pumped solid-state lasers,DPSSL),采用柔性能量光纤传输激光能量,设计了一款实用的便携式清洗扫描头。研制的激光清洗机最高平均功率达到250W,性能指标已经与德国类似设备相当。使用该清洗机开展了轮胎模具清洗试验,该清洗机亦可用于激光除锈等领域。
1 清洗光源的选择实验研究
为了探究哪种激光光源能更有效地清洗轮胎模具,作者采用功率相近的两种激光作用于钢板表面的橡胶,比较了橡胶对CO2激光和YAG激光的吸收率,结果表明,橡胶对YAG脉冲激光的吸收率明显高于CO2激光,对比见图1。鉴于轮胎模具表面需要清洗的物质为长期硫化形成的“橡胶垢”,且大功率的CO2激光难以采用柔性光纤进行传输,对于实际操作造成不便,故光源采用脉冲YAG激光器较好。
2 脉冲YAG激光清洗轮胎模具实验与结果分析
通过橡胶吸收效果对比,得出脉冲YAG激光适用于轮胎模具的激光清洗。鉴于此,作者开发了一台全固态脉冲YAG激光清洗机,基于该清洗机开展了轮胎模具激光清洗实验。
2.1 实验方案
工业环境中对设备的稳定性要求十分严格,轮胎模具属于异形工件,为了方便清洗,扫描头需要灵活移动,扫描结构应该尽可能轻巧。将激光器及其附属水冷、电控装置置于稳定平台,采用柔性能量光纤连接激光器与扫描头,这样手持扫描头部分只需要准直透镜、扫描电机与振镜、聚焦场镜。相比于将整个激光器置于手持部分的方案,在实际操作时更加灵活便利,设备稳定性更好。
整体方案示意图如图2所示。实验中采用全固态半导体抽运调Q激光器、全反镜M1和输出镜M2构成激光谐振腔,腔内有半导体抽运模块和调Q器件,产生的YAG脉冲激光通过耦合透镜将激光能量耦合进入能量光纤中,激光通过光纤的传输,出纤后进行准直、扫描、聚焦,作用于待清洗物体表面。
实验在山东省某轮胎制造工厂进行,实验用轮胎模具为工厂模具车间需要清洗的模具,模具材料为铝。
Fig.2 Schematic diagram of the proposed system
实验中为了探索不同激光参量对轮胎模具清洗效果的影响,尽可能多地采用不同参量的激光对轮胎模具进行清洗。图3为激光清洗设备整机。平均功率150W~250W,脉冲重复频率5kHz~15kHz,聚焦场镜有f=63mm,f=100mm两种规格,扫描频率20Hz~100Hz。图4为激光清洗设备手持扫描头装置图。
Fig.3 Overall drawing of laser cleaning equipment
Fig.4 Hand-held laser scanner of laser cleaning equipment
2.2 轮胎模具清洗效果分析
采用各种不同的激光参量对轮胎模具开展了一系列清洗实验。实验表明,当平均功率达到200W、脉冲频率10kHz、使用f=63mm的聚焦场镜时,可以有效开展模具表面的橡胶污垢清洗,得到较好的清洗效果。图5为清洗效果。
Fig.5 Comparison of the tire mold before and after cleaning
通过测量,YAG激光脉冲宽度为200ns,可计算出单脉冲能量为20mJ,峰值功率为100kW。所使用的能量光纤芯径D1=400μm,数值孔径为0.2,准直后光斑直径d=15mm,可以计算出聚焦光斑直径D2=0.34mm(实际光斑直径约0.4mm),f=63mm场镜对应的扫描宽度为50mm,可以算出扫描速率为2000mm/s,能量密度为250mJ/mm2。
2.3 激光能量密度的对清洗效果影响分析
实验结果表明,当加快扫描速率、降低平均功率或者换用f=100mm的场镜,导致激光清洗的能量密度明显低于250mJ/mm2时,清洗效果明显变差,模具表面的污物难以清除干净。图6、图7和图8分别为加快扫描频率、降低平均功率、换用f=100mm场镜时的清洗效果,可见明显的污物残留。当增加激光的平均功率时,清洗速度明显变快。通过计算德国CleanLaser 150W清洗设备的激光参量,可知其工作时的功率密度为270mJ/mm2。由此可见,轮胎模具清洗效果与激光能量密度有关,高于250mJ/mm2时,才能将模具清洗干净。
Fig.6 Cleaning effect with sweep frequency of 50Hz
Fig.7 Cleaning effect with laser power of 150W
Fig.8 Cleaning effect with f of 100mm for the field lens
2.4 激光峰值功率对清洗效果影响分析
实验表明,当保持激光功率仍为200W,增加激光脉冲重复频率时,激光脉冲的峰值功率会降低,清洗效果变差,速度变慢;反之清洗效果变好,清洗速度更快。图9、图10分别为重复频率为12kHz,8kHz时的清洗效果图。由此可见,峰值功率太低时无法将模具清洗干净,而且还发现,峰值功率越高,清洗速度越快。
Fig.9 Cleaning effect with repetition frequency of 12kHz
Fig.10 Cleaning effect with repetition frequency of 8kHz
2.5 光束质量的影响
在研制这台激光清洗机的过程中发现,激光的光束质量太差会限制光纤芯径,从而限制激光出纤之后的聚焦效果,或者为了保证聚焦效果而采用短焦的场镜,导致清洗模具时操作不便。但是提高光束质量与提高平均功率是一对矛盾体,如何在两者之间达到平衡,以达到更好的清洗效果是需要继续努力的方向。
3 结 论
介绍了自主研制的激光清洗机,采用DPSSL调Q脉冲激光器,能量光纤连接激光器和轻便灵巧的扫描头,平均功率达到250W。通过实验,本激光清洗机通过合理调整参量后对轮胎模具清洗能够取得很好的效果。轮胎模具清洗的激光能量密度阈值约为250mJ/mm2,提高激光峰值功率和平均功率能提高清洗速度和清洁效果。对比CleanLaser激光清洗机,该机在能量密度、脉冲频率、单脉冲能量等主要性能指标上已经达到国外激光清洗设备的水平;但峰值功率还有一定的差距,光束质量也还有改善的空间。
作为激光清洗机在轮胎模具清洗领域的一次探索,可以为该领域激光清洗设备的研究提供参考。
[1] SONG F, LIU Sh J. Laser cleaning technique[J]. Cleaning World, 2005, 21(2):28-30(in Chinese).
[2] CHEN J F, ZHANG Y K, KONG D J,etal. Research progress of cleaning tiny particles by short pulsed laser [J]. Laser Technology, 2007, 31(3):301-305(in Chinese).
[3] LEE J M, WATKINS K G. Removal of small particles on silicon wafer by laser-induced airborne plasma shock waves[J]. Journal of Applied Physics, 2001, 89(11): 6496-6500.
[4] YE Y Y, YUAN X D, XIANG X,etal. Clearance of SiO2particles on K9 glass surfaces by means of laser shockwave [J]. Laser Technology, 2011, 35(2):245-248(in Chinese).
[5] SONG F, ZHOU W F, LIU Sh J,etal. Laser cleaning-microelectronic element [J]. Cleaning World,2006, 22(1):38-43(in Chinese).
[6] CHEN J F, ZHANG Y K, XU R J,etal. Experimental research of paint removement with a fast axis flow CO2laser [J]. Laser Technology, 2008, 32(1):64-66(in Chinese).
[7] BRYGO F, DUTOUQUET C, le GUERN F,etal. Laser fluence, repetition rate and pulse duration effects on paint ablation[J]. App-lied Surface Science, 2006, 252(6): 2131-2138.
[8] DAURELIO G, CHITA G, CINQUEPALMI M. Laser surface cleaning, de-rusting, de-painting and de-oxidizing[J]. Applied Physics, 1999, A69(7): S543-S546.
[9] CHEN P F, YU X Ch, ZHANG Z H,etal. The laser cleaning system of aircraft skin paint removal: China, 201620509086.5 [P]. 2016-05-30(in Chinese).
[10] SHI Sh D, DU P, LI W,etal. Research on paint removal with 1064nm quasi-continuous-wave laser[J]. Chinese Journal of Lasers, 2012, 39(9): 903001(in Chinese).
[11] TAN R Q, ZHENG G, ZHENG Y J,etal. The effect of laser paint stripping on the mechanical properties of the substrate [J]. Laser Journal, 2005, 26(6):83-84(in Chinese).
[12] HOU S X, LUO J J, XU J,etal. Laser cleaning technology application of military equipment[J]. Infrared and Laser Engineering, 2007(s1):625-628(in Chinese).
[13] WANG Z M, ZENG X Y, HUANG W L. Status and prospect of laser cleaning procedure [J]. Laser Technology, 2000, 24(2): 68-73(in Chinese).
[14] YE Y Y, QI Y, QING L,etal. Laser cleaning of contaminations on the surface of stone relics [J]. Chinese Journal of Lasers, 2013,40(9): 903005 (in Chinese).
[15] ZHANG B J, TIE J H, LIU J W. Cleaning technique for ancient architecture and stone relics [J]. Cleaning World, 2004, 20(5):25-28(in Chinese).
[16] QI Y, ZHOU W Q, CHEN J,etal. Laser cleaning of contaminants on the surface of yungang grottoes [J]. Safety and Environmental Engineering, 2015, 22(2):32-38(in Chinese).
[17] ZHU Y F, TAN R Q. Graffiti removal-new applications of laser cleaning [J]. Laser & Infrared, 2011, 41(8):840-844(in Chin-ese).
[18] WANG Z M, HUANG W L. Parameters and mechanisms of laser cleaning rubber layer on a tyre mould [J]. Chinese Journal of Lasers, 2000, 27(11):1050-1054(in Chinese).
ExperimentalstudyaboutcleaningoftiremoldswithpulseYAGlaser
ZHANGZihao1,2,YUXiaochang1,2,WANGYing1,CHENPeifeng1
(1.School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China; 2.Wuhan Jieduyi Photoelectric Technology Co.Ltd., Wuhan 430014, China)
In order to obtain technological parameters for cleaning tire molds with laser, a self-developed pulse YAG laser with the average power of 250W was used to carry out experiment of tire mold cleaning. The experimental data of the relationship between different laser parameters and the cleaning effect of the tire mold was obtained. The relationships between the parameters such as laser peak power, energy density and cleaning speed, cleaning effect of the tire mold were studied. The results show that for cleaning tire molds, pulse YAG laser is more efficient than CO2laser. Laser energy density threshold for cleaning tire molds is about 250mJ/mm2. The increase of laser peak power and average power can improve cleaning speeds and cleaning effect. The research provides the reference for research of laser cleaning equipment in this field.
laser technique; laser cleaning; tire mold; YAG laser
1001-3806(2018)01-0127-04
张自豪(1992-),男,硕士研究生,现主要从事大功率脉冲激光器、工业激光应用等方面的研究。
*通讯联系人。E-mail:pfchen@hust.edu.cn
2017-03-08;
2017-04-14
TN249
A
10.7510/jgjs.issn.1001-3806.2018.01.025