LIBS应用于甲烷层流扩散火焰空间分布研究
2018-01-02田照华董美蓉陆继东李诗诗
田照华,董美蓉,陆继东,李诗诗
(华南理工大学 电力学院,广州 510640)
LIBS应用于甲烷层流扩散火焰空间分布研究
田照华,董美蓉*,陆继东,李诗诗
(华南理工大学 电力学院,广州 510640)
为了研究扩散火焰空间分布特性,采用具有空间分辨能力的激光诱导击穿光谱技术对甲烷/空气本生灯扩散火焰进行了实验研究,得到了不同流量(0.100L/min,0.120L/min)、不同高度(7mm,9mm,11mm)的火焰以及中心轴线上的击穿阈值、等离子体能量、光谱强度比等相关参量的分布情况。结果表明,等离子体能量可以用来定性描述扩散火焰温度空间变化规律,结合分析等离子体能量和H/O谱线强度比的分布情况可确定扩散火焰不同高度上火焰前沿的位置以及第二燃烧区域的宽度;根据相关实验点近似得到H/O谱线强度比与火焰局部当量比线性关系式,可得到不同流量条件下扩散火焰轴向当量比分布情况以及火焰长度。此研究结果对于激光诱导击穿光谱技术应用于燃烧诊断方面具有重要意义。
光谱学;空间分布;激光诱导击穿光谱;层流扩散火焰
引 言
激光诱导击穿光谱(laser-induced breakdown spectroscopy,LIBS)技术是一项基于激光的光谱分析技术,该技术利用高峰值功率的脉冲激光聚焦在样品表面产生等离子体,样品经过烧蚀并激发出原子光谱,然后传输到光谱仪内进行处理,以此来识别样品中的元素组成成分,进而可以进行材料的识别、分类、定性分析[1-3]。近些年来,LIBS应用取得了相当大的进展,越发展现出其灵活与多用。因为激光等离子体可以在气态[4-5]、液态[6-7]、固态[8-10]中产生,使得实时多元素分析不仅仅在实验室条件下能够做到,而且在一些苛刻危险的环境也可以实现。
火焰是一种极其复杂的化学反应现象,伴随着剧烈的热能动能以及物质的传输,研究火焰结构、深入理解燃烧机理对于当今人类发展有着重要的意义。一些传统的燃烧诊断技术例如热电偶、压电传感器、热线风速仪物理探针容易受到流场干扰,结果一般需要谨慎校正,而且使用受环境限制,缺乏足够的时间空间分辨率。目前LIBS技术因其本身优越性已被应用于火焰研究,在燃烧诊断方面具有巨大的潜力,国内外已经有一些相关的研究成果。KOTZAGIANNI和COURIS等人[11-12]将飞秒激光用于碳氢燃料本生灯层流预混火焰的诊断,研究了等离子体的时间演化特性以及不同激光能量、延迟时间和当量比条件下的火焰光谱特征。LEE等人[13]通过假设N元素谱线强度与火焰温度成反比来定量测量火焰温度。也有研究者将LIBS技术应用于煤燃烧火焰中碱金属的定量测量[14-16]。
LIBS技术在气体燃料燃烧火焰诊断方面最典型的应用为火焰当量比Φ的定量测量。当量比是一个无量纲量,指可燃混合物中实际含有的燃料量与所含空气量理论上可完全燃烧的燃料量之比,用于反映氧化剂和燃料的配比情况,同时会影响反应过程及燃烧产物。火焰局部当量比则反映火焰该局部范围内的混合物在反应进行完全之后能达到的状况(例如甲烷火焰Φ=1的局部位置的混合物反应完全之后能够全部生成H2O和CO2而无反应物或氧化剂剩余)。PHOUC和WHITE[17]采用LIBS技术研究甲烷空气混合气当量比,发现656.3nm Hα和777nm O(Ⅰ)谱线强度比与当量比存在线性关系,并做了标定。类似的方法被应用各种实验室火焰的当量比测量,例如层流预混火焰[18]、层流扩散火焰[19]、湍流预混火焰[20]等。FERIOLI等人[21-22]也将LIBS用于测量火花点火引擎排出气流的当量比研究,为实现实时、在线、精确测量发动机排气当量比奠定了基础。
综上所述,现今LIBS在火焰诊断上的应用主要是对特定量的定量测量。而由于激光脉冲聚焦后,与火焰作用的区域较小且作用时间较短,因此LIBS技术能够较好地实现对火焰的空间分辨测量,进而实现火焰结构的分析。本文中通过搭建专门的具有精密空间分布测量功能的LIBS实验台架,将LIBS应用于甲烷层流扩散火焰空间分布特性的研究。首先通过分析击穿阈值、等离子体能量与温度的关系,提出了一种利用等离子体能量来定性描述火焰温度空间分布的方法。然后综合利用谱线强度比以及等离子体能量的空间分布曲线进一步分析探究甲烷层流扩散火焰空间结构。
1 实验系统
本文中所采用的实验系统如图1所示。主要包括LIBS测量系统和管路燃烧系统两部分。
LIBS测量系统主要包括激光器、透镜、光谱仪等装置。激光光源为脉冲光束从Nd∶YAG调Q激光器(E-lite 200,北京镭宝光电技术有限公司),工作波长为1064nm,脉宽6ns,频率2Hz,光斑的直径为6mm。光束经过焦距为200mm的透镜聚焦在火焰上激发产生等离子体,同时在所产生等离子体的后端放置激光能量计用来测量激光与火焰作用后的残余脉冲能量。
Fig.1 Experiment setup
等离子体发出的光由一个150mm焦距的石英透镜收集,通过光纤送入双通道光谱仪(Avantes,AvaSpec-2048FT),光谱仪最小积分时间为1.1ms,延迟时间为1700ns。
管路燃烧系统主要包括质量流量计、流量控制器、本生灯等。高纯甲烷(质量分数为0.9995)流经质量流量计通入到本生灯内燃烧。通过质量流量控制器可以对甲烷流量进行精确控制。石英本生灯为自行设计制造,灯管内径为10mm,能够产生稳定的轴对称层流火焰,本生灯放置在3维平移台上,通过调节平移台,可以将激光脉冲聚焦在火焰的不同位置,用于实现火焰空间结构的研究,平移台横向调节精度为0.01mm。
本文中研究的扩散火焰流量q分别为0.100L/min(雷诺数Re=12.4)和0.120L/min(Re=14.8),雷诺数远小于3000,属于层流扩散火焰。甲烷流量为0.100L/min的扩散火焰照片如图2所示,图中h和r分别表示火焰轴向高度值和径向半径,单位为mm。扩散火焰是气体可燃物和空气不预先混合的情况下,燃烧所形成的火焰,完全通过周围空间内的空气扩散来供给可燃物燃烧所需的氧气。火焰的表面积大小以及火焰形状不由火焰传播速度决定,而是取决于气体燃料和周围空气互相之间的混合速度。对于层流扩散火焰,混合过程仅依靠分子热运动的分子扩散,对于由于火焰各出可燃物浓度和成分不断变化,火焰前沿基本稳定在当量比Φ=1的表面[23],火焰轴线上火焰前沿位置即为火焰顶点,此顶点的高度值h即为火焰长度。在扩散火焰前沿外围有一层第二燃烧区域,一些内部反应产生的中间产物在此区域内燃烧,例如H2和CO[24]。对扩散火焰前沿以及第二燃烧区域的研究在控制燃料与空气混合过程方面有着重要的意义。
Fig.2 Photograph of laminar diffusion flame with methane flow rate of 0.100L/min
2 结果与讨论
2.1 等离子体能量与击穿阈值、火焰温度的关系及其水平分布研究
由于碰撞影响主导电离机制,气体击穿阈值Eth受激光作用区域粒子密度ρ的影响很大,粒子密度越小越难击穿,击穿阈值越大。在气体温度T恒定的情况下,击穿阈值会受气体压力p的影响。DAVIS等人[25]的研究表明,对于相同气体成分,在相同入射激光条件下,击穿阈值与气体压力的关系可以表示为:
式中,β是一个小于0的常数。值得提及的是,真正影响击穿阈值的是击穿区域粒子密度,而非压力。根据ZCLDOVICI等人的火焰传播热力理论,在恒定大气压条件下,理想气体状态方程p=ρRT是近似成立的[26](R为理想气体常数)。因而在理想状态下气体的击穿阈值就可以转换为以下简单方程:
式中,α是正比例常数,δ是与实验台架相关参量,α和δ的值可以通过标定得到。根据(2)式可以看出,击穿阈值与温度成正相关。KIEFER和TRÖGER[27]就以此提出了一种利用击穿阈值来定量测量火焰温度的方法,他们的实验结果表明,火焰中击穿阈值受气体化学组成成分的影响相对于粒子密度(或者说火焰温度)来说可以忽略。但是,击穿阈值的测量方法(见下文)很复杂且测量精确度有限,而且击穿阈值只能单独测量无法同步采集光谱数据,因为入射能量仅够用来击穿,等离子体发射的光谱信号极弱。
等离子体能量表征激光作用区域粒子所吸收溅射的激光能量,也与作用区域的粒子密度相关[28],即作用区域粒子密度越大,在相同入射激光能量条件下粒子所能吸收的能量就越高,所测等离子体能量就越高。根据之前的讨论,可以推断出在恒定大气压条件下等离子体能量与火焰温度成负相关。为了探究验证等离子能量Ep与火焰温度之间的变化关系,作者同步测量了甲烷流量为0.120L/min的扩散火焰不同高度上(h=9mm,11mm)的击穿阈值和等离子体能量水平分布情况。由于火焰是轴对称的,实验只需研究半边火焰。实验中,击穿阈值测量采用半击穿法,即调整入射激光能量使得该点处火焰被击穿的概率约为50%。每个测量点观测50个激光脉冲,若有25次左右击穿成功,则此时的入射激光能量为火焰该测量点处的击穿阈值。在完成一个高度上的击穿阈值测量后,将入射激光能量调高并固定为90.07mJ(测量50次取平均),测量残余脉冲能量(测量点与击穿阈值的相同),通过入射激光能量与残余能量之差得到等离子体能量。
实验结果如图3所示,竖虚线标示出曲线顶点。两图中击穿阈值变化规律类似,表征火焰温度由中心到外围先升高后降低。而且由两图中可以清晰地看出击穿阈值和等离子体能量变化规律正好相反,且步调一致。因此可以证明等离子体能量与火焰温度成负相关,即可以用等离子体能量来定性描述甲烷扩散火焰温度分布情况。而且等离子体能量测量简单,只需在采集光谱数据的同时测量尾部残余激光能量即可,因而有利于将其与光谱数据同步分析,结合起来探究火焰结构及反应机理。
Fig.3 Radial distribution of breakdown threshold pulse energy and plasma energy with methane flow rate of 0.120L/min at different heights
a—h=9mm b—h=11mm
2.2 甲烷扩散火焰空间分布特性研究
为了研究甲烷扩散火焰空间分布特性,分别在流量为q=0.100L/min,q=0.120L/min的火焰中心剖面上 3个高度(h=7mm,9mm,11mm)水平线(从火焰中心到外界)以及轴线上进行实验。由于轴向真正h=0mm位置点(本生灯口)无法进行实验而且较难确定,因此实验中选取的轴向h=0mm位置略高1mm。实验每个位置点测量50次。入射激光能量固定在90.07mJ,采集光谱的同时对末端的激光残余能量进行测量,取50次测量平均值。考虑到火焰内外反应剧烈程度差异,所取的测量位置点疏密不同。图4为甲烷流量为0.100L/min的火焰中心轴线9mm高度上单次测量光谱图。可以看到几条清晰高信噪比的谱线:656.35nm Hα,777.34nm O(Ⅰ),746.89nm N(Ⅰ),247.87nm C(Ⅰ)以及分子光谱388.20nm CN。
Fig.4 LIBS spectra at the height of 9mm with methane flow rate of 0.100L/min
图5为流量q=0.100L/min扩散火焰的不同高度上的等离子能量水平分布情况。根据之前得出的等离子体能量分布可以表征火焰温度分布情况的结论可看出,各高度上温度水平变化规律基本相同:从火焰中心到外,先缓慢升高达到最高温度后又逐渐降低直到接近外界空气击穿水平。在火焰内部,随着高度的升高,温度也变高,当然这是在有限高度内。由图6中不同甲烷流量的火焰轴线等离子体能量分布曲线可以看出,温度沿轴向先升高,达到一定高度后燃料被大部分消耗,温度开始降低。参照图5中3条曲线变化趋势,大致选择等离子能量低于37mJ(横向虚线表示)的区域为高温区,由图5中可以看出,随着高度的升高,高温区的宽度在增加,h在7mm,9mm,11mm高度上,高温区宽度约为1.0mm,1.2mm,1.5mm。另外由图6可以看出,火焰轴向高温区宽度远比径向的宽,约为10mm。这是因为一方面火焰下部反应产生的热量被带到火焰上部,另一方面受浮力作用燃料空气向上流动,火焰上部混合更加充分、反应更为剧烈。
Fig.5 Horizontal distribution of plasma energy at different heights with methane flow rate of 0.100L/min
Fig.6 Axial distributions of plasma energy in the central line of flames with different flow rates
根据相关理论分析及实验结果表明[18-23],气体火焰中特定谱线强度之比(例如甲烷空气燃烧火焰中的H/O,C/O等)与火焰局部当量比呈线性关系。图7为流量q=0.100L/min的甲烷火焰中心剖面不同高度上656.35nm Hα与777.34nm O(Ⅰ)谱线强度比水平分布图。由图中可以看出,由于外界空气不断地掺混扩散,H/O谱线强度比(也可以说当量比)从火焰中心到外部不断下降,到径向半径r=11mm时基本达到空气击穿水平。而且可以清晰地看出3条曲线中途出现一个拐点,且3个拐点对应的H/O强度比大致相同(由横虚线标出)。参照图5也可以看出,这3个拐点的径向位置对应着所在高度上高温区开始的点。之前介绍过,扩散火焰前沿位于当量比Φ=1的表面,而此表面内可燃物和氧化剂刚好可以完全反应,所以能够放出大量的热向外扩散形成扩散火焰高温区。因此可以确定此拐点对应着火焰该高度上火焰前沿的位置。而火焰前沿到外部空气击穿水平位置的距离即为扩散火焰第二燃烧区域,如图7中双向箭头所示,h在7mm,9mm,11mm高度上,第二燃烧区域的宽度约为6.5mm,7.0mm,8.0mm。
Fig.7 Radial distributions of H/O intensity ratio at different heights with methane flow rate of 0.100L/min
火焰前沿对应的H/O强度比约为3.29(3点平均值),而在远离火焰处的空气击穿的H/O强度比约为0.34,而这两个位置的H/O强度比对应的火焰局部当量比约为1和0。通过取这两组特殊值,可以求出近似的H/O强度比IH/O和火焰局部当量比Φ的公式,如下:
利用此关系式求出不同甲烷流量的扩散火焰中心轴向当量比分布情况,如图8所示。对两组数据进行了指数拟合,拟合公式如下:
Φ=1.93e-h/14.88+9.32e-h/3.04+0.36,(q=0.100L/min)
Φ=5.27e-h/8.5+18.33e-h/2.29+0.48,(q=0.120L/min)
Fig.8 Axial distributions of local equivalent ratio in the central line of flames with different flow rates
两组拟合相关性系数分别为0.989和0.991,具有很好的相关性。将Φ=1 代带入(4)式和(5)式得出h=15mm和h=18mm,由于实验中h=0mm位置点比本生灯口略高1mm,因此可以得出的甲烷流量为0.100L/min和0.120L/min的火焰长度分别约为16mm和19mm。
3 结 论
通过专门的搭建实验台架,将LIBS应用于甲烷本生灯层流扩散火焰的空间分布特性研究。
(1)通过理论分析论证了火焰击穿等离子能量与火焰局部温度的成负相关。通过同步测量部分预混火焰击穿阈值和等离子体能量水平分布情况,发现两者变化规律相反且步调一致,进一步验证了此结论。从而提出了一种利用等离子体能量来定性描述火焰温度分布的方法,实现光谱和火焰温度信息同步分析,而且通过定标及优化工作此方法是可以实现火焰温度分布定量测量分析的。
(2)通过分析火焰径向及轴向等离子体能量分布曲线,探究了甲烷扩散火焰温度空间分布规律及高温区域宽度。结合分析火焰不同高度上的H/O强度比和等离子体能量水平分布曲线变化规律,近似确定了火焰不同高度上火焰前沿的位置,以及扩散火焰第二燃烧区域的宽度。
(3)通过取火焰前沿位置和无穷远处的两组当量比和H/O谱线强度比数据,近似地得出了二者线性关系式,并通过此关系式得出了火焰轴向当量比分布,拟合出了相关性很高的拟合曲线,且计算得出火焰长度值。
[1] MIZIOLEK A W, PALLESCHI V, SCHECHTER I,etal. Laser-induced breakdown spectroscopy(LIBS): fundamentals and applications[M]. New York,USA: Cambridge University Press, 2006: 1-90.
[2] THAKUR S N, SINGH J P. Fundamentals of laser induced breakdown spectroscopy[M].New York,USA:IEEE, 2007:3-21.
[3] CREMERS D A, RADZIEMSKI L J. Handbook of laser-induced breakdown spectroscopy[M]. Chichester, UK: John Wiley & Sons Inc., 2006:1-50.
[4] CYEMERS D A, RADZIEMSKI L J. Detection of chlorine and fluorine in air by laser-induced breakdown spectroscopy[J]. Analytical Chemistry, 1983,55(8):1252-1256.
[5] RADZIEMSKI L J, LOREE T R, CYEMERS D A,etal. Time-resolved laser-induced breakdown spectrometry of aerosols[J]. Analytical Chemistry, 1983, 55(8):1246-1252.
[6] MA C H, CUI J L. Quantitative analysis of composition in molten steel by LIBS based on improved partial least squares[J]. Laser Technology, 2016, 40(6): 876-881(in Chinese).
[7] WANG Y, ZHAO N J, MA M J,etal. Chromium detection in water enriched with graphite based on laser-induced breakdown spectroscopy[J]. Laser Technology , 2013, 37(6): 808-811(in Chinese).
[8] ZHU Y Q, ZHONG X, HE Y,etal. Measurement of alkali content in Zhundong coal after chemical fractionation treatment by LIBS method[J]. Laser Technology , 2016, 41(1): 101-105(in Chinese).
[9] SATTMANN R, MONCH I, KRAUSE H,etal. Laser-induced breakdown spectroscopy for polymer identification[J]. Applied Spectroscopy, 1998, 52(3): 456-461.
[10] ARGON C, AGUILERA J A, PENALBA F. Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd∶YAG laser[J]. Applied Spectroscopy, 1999, 53(10): 1259-1267.
[11] KOTZAGIANNI M, COURIS S. Femtosecond laser induced breakdown for combustion diagnostics[J]. Applied Physics Letters, 2012, 100(26): 264104.
[12] COURIS S, KOTZAGIANNI M, BASKEVICIUS A,etal. Combustion diagnostics with femtosecond laser radiation[J]. Journal of Physics: Conference Series, 2014, 548(1): 012056.
[13] LEE T W, HEGDE N. Laser-induced breakdown spectroscopy for in situ diagnostics of combustion parameters including temperature[J]. Combustion and Flame, 2005, 142(3): 314-316.
[14] van EYK P J, ASHMAN P J, ALWAHABI Z T,etal. Simultaneous measurements of the release of atomic sodium, particle diameter and particle temperature for a single burning coal particle[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2099-2106.
[15] SAW W L, NATHAN G J, ASHMAN P J,etal. Assessment of the release of atomic Na from a burning black liquor droplet using quantitative PLIF[J]. Combustion and Flame, 2009, 156(7): 1471-1479.
[16] BENNETT B A V, MCENALLY C S, PFEFFERLE L D,etal. Computational and experimental study of axisymmetric coflow partially premixed methane/air flames[J]. Combustion and Flame, 2000, 123(4): 522-546.
[17] PHUOC T X, WHITE F P. Laser-induced spark for measurements of the fuel-to-air ratio of a combustible mixture[J]. Fuel, 2002, 81(13): 1761-1765.
[18] MICHALAKOU A, STAVROPOULOS P, COURIS S. Laser-induced breakdown spectroscopy in reactive flows of hydrocarbon-air mixtures[J]. Applied Physics Letters, 2008, 92(8): 081501.
[19] KIEFER J, TROGER J W, LI Z S,etal. Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics[J]. Applied Physics, 2011, B103(1): 229-236.
[20] MANSOUR M S, IMAM H, ELSAYED K A,etal. Local equivalence ratio measurements in turbulent partially premixed flames using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta,2009, B64(10): 1079-1084.
[21] FERIOLI F, BUCKLEYS G. Measurements of hydrocarbons using laser-induced breakdown spectroscopy[J]. Combustion and Flame, 2006, 144(3): 435-447.
[22] FERIOLI F, BUCKLEY S G, PUZINAUSKAS P V. Real-time measurement of equivalence ratio using laser-induced breakdown spectroscopy[J]. International Journal of Engine Research, 2006, 7(6): 447-457.
[23] CEN K F. Combustion theory and pollution control[M]. Beijing: Mechanical Industry Press, 2004:140-145(in Chinese).
[24] DEAN J A, RAINS T C. Flame emission and atomic absorption spectrometry [M]. New York,USA: Marcel Dekker, 1971:154-156.
[25] DAVIS J P, SMITH A L, GIRANDA C,etal. Laser-induced plasma formation in Xe, Ar, N2, and O2at the first four Nd∶YAG harmonics[J]. Applied Optics, 1991, 30(30): 4358-4364.
[26] CEN K F. Combustion theory and pollution control[M]. Beijing: Mechanical Industry Press, 2004:116-118(in Chinese).
[27] KIEFER J, TROGER J W, LI Z S,etal. Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics[J]. Applied Physics, 2011, B103(1): 229-236.
[28] DO H, CARTER C. Hydrocarbon fuel concentration measurement in reacting flows using short-gated emission spectra of laser induced plasma[J]. Combustion & Flame, 2013, 160(3):601-609.
Laser-inducedbreakdownspectroscopyinspatialdistributionofmethanelaminardiffusionflame
TIANZhaohua,DONGMeirong,LUJidong,LIShishi
(School of Electric Power, South China University of Technology, Guangzhou 510640, China)
In order to explore spatial distribution characteristics of diffusion flame, spatially-resolved laser-induced breakdown spectroscopy (LIBS) was used to study the laminar diffusion methane-air flame. The spatial distributions of the threshold energy, the plasma energy and the intensity ratio were obtained at different heights (7mm, 9mm and 11mm) with the flow rate of 0.100L/min and 0.120L/min. The results show that the spatial distribution of flame temperature can be qualitatively described by the plasma energy. Combining the analysis of the plasma energy distribution and the H/O intensity ratio distribution, the positions of the flame front and the width of secondary combustion region can be determined. In addition, according to the relevant measurement, the linear equation for H/O intensity ratio and equivalent ratio can be determined approximately. By this linear equation, the axial distribution of local equivalent ratio and the flame length is obtained. These results have important significance for LIBS application in combustion diagnosis.
spectroscopy; spatial distribution; laser-induced breakdown spectroscopy; laminar diffusion flame
1001-3806(2018)01-0060-06
国家自然科学基金资助项目(51406059;51476061)
田照华(1991-),男,硕士研究生,现主要从事激光光谱法火焰检测的研究。
*通讯联系人。E-mail:epdongmr@scut.edu.cn
2017-02-23;
2017-03-15
O657.38
A
10.7510/jgjs.issn.1001-3806.2018.01.012