小麦分子标记数据库的建立
2017-12-26李玮宋国琦陈明丽高洁张淑娟李玉莲张荣志王姣韩小东李根英宋华东
李玮+宋国琦+陈明丽+高洁+张淑娟+李玉莲+张荣志+王姣+韩小东+李根英+宋华东
摘要:为了有效利用已经开发的小麦分子标记,加强分子标记载体材料及检测数据的交流利用,掌握育种亲本的基因型组成,本研究通过收集整理已发表的分子标记及其载体材料、分子标记检测结果和开展育种亲本分子标记检测,建立起小麦分子标记数据库。共收录分子标记信息311条,分子标记载体材料27个,分子标记检查数据19 006条,检测育种亲本1 784份。本数据库的建立可助推小麦分子育种共享平台建设。
关键词:小麦;分子标记;载体材料;数据库
中图分类号:S512.103文献标识号:A文章编号:1001-4942(2017)11-0001-12
Construction of Wheat Molecular Marker Database
Li Wei1,2, Song Guoqi1,2, Chen Mingli1,2, Gao Jie1,2, Zhang Shujuan1,2, Li Yulian1,2,
Zhang Rongzhi1,2, Wang Jiao1,2, Han Xiaodong1,2, Li Genying1,2, Song Huadong2,3
(1. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
2. Key Laboratory of Wheat Biology and Genetic Improvement in the North Yellow & Huai River Valley,
Ministry of Agriculture/National Engineering Laboratory for Wheat & Maize, Jinan 250100, China;
3. Shandong Cotton Research Center, Jinan 250100, China)
AbstractIn order to effectively utilize published wheat molecular markers, enhance exchange and application of marker-donor materials and data, and understand the genotype of breeding parents, the wheat molecular marker database was established through collection and systematization of published molecular marker information, marker-donor materials, and marker detection results. Three hundred and eleven molecular markers, 27 marker-donor materials, 19 006 detection records and 1 784 breeding parents were included. The establishment of the database will promote the development of wheat molecular breeding platform.
KeywordsWheat; Molecular marker; Marker-donor material; Database
隨着检测、测序等技术的发展,分子标记技术已被广泛应用于基因定位与克隆、数量性状位点(QTL)分析、关联分析、比较基因组学、遗传多样性评估、系统发生学和全基因组选择等生命科学领域。分子育种以分子标记辅助选择和转基因为主要内容。由于对转基因产品的安全性存在争议,将分子标记辅助选择和传统育种相结合成为在一定时期内分子育种应用的主要形式[1]。传统育种通过对性状的选择实现遗传改良,存在周期长、效率低等缺点。分子标记辅助选择通过对分子标记进行选择实现对目标基因型的选择,包括前景选择和背景选择。前景选择即对与目标基因紧密连锁的分子标记进行选择,可以实现早期选择,减小选择群体;背景选择即对遗传背景的选择,可加快遗传背景的恢复速度,缩短育种年限,减轻连锁累赘[2,3],从而提高育种效率。
小麦是世界上种植范围最广、最重要的粮食作物之一,以小麦(面粉)作为主食的人口占世界人口的35%[4]。在小麦中,分子标记最早被用于连锁分析[5],为后续的分子标记辅助选择奠定了基础。目前,小麦中开发的分子标记所针对基因的共同特点是遗传力低、一般为隐性基因、对应的表型鉴定困难或昂贵、需要多基因聚合,主要包括抗病、农艺和品质性状等[6]。从19世纪80年代后期开始,分子标记技术被广泛用于小麦实践[7]。澳大利亚、美国、加拿大、墨西哥(国际玉米小麦改良中心)、阿根廷、英国、法国、土耳其和印度等国家都开展了相关研究项目,主要使用的分子标记为STS、SSR、SNP、SCAR、CAPS等。利用分子标记辅助基因确认的报道有抗赤霉病、抗穗发芽、抗白粉病、抗叶锈病、抗叶斑病、染色体代换、抗秆锈病、高分子量谷蛋白亚基等;利用分子标记辅助回交的报道有高分子量谷蛋白亚基改良,同时导入抗小麦吸浆虫、抗赤霉病和叶锈病基因,多个白粉病基因导入,籽粒蛋白质含量改良,面团特性、持久锈病抗性和矮秆改良,抗条锈基因导入,抗穗发芽QTL导入等;进行聚合基因或QTL的报道有抗白粉病、抗叶锈病、抗赤霉病、抗禾谷孢囊线虫、抗穗发芽和籽粒蛋白质含量等[6]。与小麦籽粒重量相关的基础性研究也已经开展,目前开发了粒重、粒宽、细胞分裂素氧化酶、细胞壁转化酶、果聚糖合成酶、蔗糖合成酶等的分子标记,可用于进一步改良粒重,提高产量潜力[8]。何中虎等[9]通过对国内外发表的连锁标记进行验证优化,将这些标记用于亲本鉴定和高世代材料的基因确认,还用于分离世代抗病性和品质性状的选择。随着分子标记辅助改良品系在育种中的应用,2005年首个利用分子标记辅助选择育成的商业化小麦品种“Patwin”在美国上市。随后加拿大的“Lillian”和“Goodeve”、阿根廷的“BIOINTA 2004”也相继上市,这些分子育种最终产品的上市标志着分子育种在实践中取得了成功。endprint
早期开发的分子标记多与目标性状连锁,由于连锁标记并非控制性状的基因本身,会因为基因重组而丧失连锁关系,降低选择效率,甚至选择无效,限制了它们的应用。2003年Andersen和Lübberstedt[10]提出功能标记(functional markers, FMs)概念,指根据基因内能引起表型变异的多态性位点开发的分子标记,即功能标记所检测位点的等位变异是导致表型变异的原因。小麦是异源六倍体植物,有A、B、D三个关系较近的亚基因组,基因组大小17 Gb[11,12]。到目前为止,研究清楚的多为由单基因控制的简单性状,对多基因控制的复杂性状没有突破性进展。功能标记开发受功能已知、序列明确、与表型关联的基因数量限制,因而进展缓慢。2012年Liu等[13]对已经公布的小麦功能标记进行了系统总结,包括小麦加工品质、农艺性状和抗病性相关的97个小麦功能标记,涉及30多个遗传位点。2016年Rasheed等[14]为了实现大量功能标记的高通量低成本检测,开发出70个通过KASP技术检测的SNP标记,并对这些标记的可靠性进行了验证。这些SNP标记约有一半是由STS等非SNP标记转化而来,另一半是新开发的,检测基因位点数增加有限。
目前,我国的农作物育种还是以常规育种为主,基于基因水平的选择刚刚起步。品种选育主要依靠育种家的经验,育种过程中存在“周期长、效率低、预见性差”等问题。其中,以下几个方面的因素限制了分子育种技术的普及性应用。一是亲本材料的基因型组成不清晰。亲本材料是优良基因的载体,是进行分子标记辅助选择的基础,只有明确了亲本材料含有哪些优异基因,才能利用分子标记辅助选择技术将其中的优异基因快速转育到新品种(系)中。二是获取含有优异基因载体材料的信息渠道不畅。在小麦上已经开发出不少与抗病、优质、高产等重要农艺性状紧密连锁的分子标记,但是分子标记的载体材料被保存在标记的研发单位,需要这些材料的育种单位不能及时获得这些资源。三是各个研究机构之间分子标记检测数据共享性不够,随着分子标记技术的普及,分子标记被广泛用于亲本材料检测评价,但是由于缺乏一个数据共享平台,不同的科研单位之间存在重复性工作,造成了人力、物力和时间的大量浪费。针对上述三个问题,本研究开展了以下工作:收集小麦上已经发表的分子标记并进行验证,甄别可用于分子育种的可靠标记;从骨干亲本入手,通过分子标记检测逐步积累亲本材料的基因型信息,并将分散在不同科研机构的检测数据整合到数据库中,最终建成便于育种家查询和使用的专业化分子标记数据库;征集含有抗病、优质、高产等优异基因的载体材料,通过分子标记数据库,打开获取这些载体材料的信息渠道;结合本单位的分子诊断技术平台,为小麦育种工作者提供全方位的服务。
1材料与方法
1.1分子标记收集与整理
本数据库收集的分子标记均与小麦性状紧密连锁或位于控制该性状的基因内部,主要包括2012年Liu等[13]和2016年Rasheed等[14]发表的文章,均来自公共资源。
将每一个小麦分子标记按照标记名称、性状种类、性状名称、基因位点名称、上下游引物序列、退火溫度、等位基因名称、预期片段大小(SNP标记为等位基因碱基类型)、染色体臂位置、载体材料和阴性对照材料、标记类型、参考文献和备注等信息条目进行整理,输入Excel表格。对于原始文献中有名称的分子标记,录入原始名称,没有名称的,以上下游引物名称的组合录入。备注中注明等位基因对应的表型、连锁标记与目的基因的遗传距离(是否功能标记)、CAPS标记对应的限制性内切酶名称等其他信息。
1.2分子标记载体材料征集与共享
小麦分子标记在报道时均有对应的载体材料,包括开发该标记时携带优异等位基因的某一小麦品种或品系(原始载体材料)和被报道含有该等位基因的其他材料(检出载体材料)。征集主要通过向文献报道的作者、育种家、种质资源库等单位和个人索取、交换或购买获得。已征集到的载体材料及时对外公布,任何组织或个人均可与本单位联系索取。
1.3分子标记检测和数据收集整理
分子标记检测一方面是为了验证分子标记的可靠性和实用性;另一方面是对育种亲本进行系统全面的检测,形成基因型数据存入数据库共享和利用。检测方法均参照原始文献报道进行,基于PCR的SSR、STS等标记采用艾本德MasterCycler96 PCR仪扩增,琼脂糖凝胶电泳分离,GelRed染色,伯乐GelDocXR凝胶成像仪观察记录。基于KASP的SNP或Indel标记采用ABI7500荧光定量PCR仪检测。
小麦分子标记检测结果主要有两个来源:一是自行检测的结果,二是公开发表的检测结果。将收集的小麦分子标记检测结果按照材料名称、标记名称、检测结果、参考文献等进行整理,输入Excel表格。
1.4小麦分子标记数据库建立
为了方便后续增加分子标记检测结果数据,将分子标记检测结果表拆分为育种亲本表和检测记录表。将分子标记信息表、育种亲本表和检测记录表导入微软的Access2010数据库管理软件。分子标记信息和育种亲本表分别以名称作为主键,以育种亲本表的主键作为检测记录表的外键,将分子标记信息表和检测记录表以分子标记名称建立关系。用Access2010进行数据库管理。
2结果与分析
小麦分子标记信息表收录169个STS标记,74个SNP标记,44个SSR标记,17个CAPS标记和7个SCAR标记,共计311个。其中与1R易位相关的分子标记有7个;与非生物胁迫相关的抗穗发芽分子标记9个,抗旱分子标记3个,抗盐分子标记2个;与农艺性状相关的籽粒重量分子标记19个,低分蘖分子标记1个,光周期分子标记13个,矮秆分子标记9个,春化分子标记23个;与抗病相关的黄矮病分子标记5个,赤霉病分子标记12个,叶锈病分子标记37个,白粉病分子标记23个,斑枯病分子标记2个,秆锈病分子标记29个,条锈病分子标记9个,褐斑病分子标记1个,黄花叶病分子标记2个,线条花叶病分子标记3个;与加工品质相关的高低分子量谷蛋白亚基分子标记49个,籽粒硬度分子标记10个,蛋白质含量分子标记3个,脂肪氧化酶分子标记4个,过氧化物酶分子标记3个,多酚氧化酶分子标记8个,蜡质分子标记8个,黄色素含量分子标记17个。由于引物位置和分子标记类型不同,部分基因位点有多个分子标记,311个标记共涉及基因位点将近130个(表1)。endprint
检测记录表收录自行检测的数据共涉及21个分子标记,包括1R易位、高分子量谷蛋白亚基、籽粒硬度、多酚氧化酶、脂肪氧化酶、黄色素含量、春化和光周期基因位点。收录的公开发表检测结果主要有矮秆[153]、抗病[154-157]、品质[158]、春化和光周期[159]。检测记录共计19 006条。育种亲本表收录被检测亲本共计1 784份,主要为当前和历史主要栽培品种、高代品系等。
3讨论与结论
小麦分子标记数据库建立之后,首先要对收集的非功能分子标记在育种亲本中的适用性进行试验验证。因为这些分子标记多是在目标性状差异极大的双亲群体中开发而来,而育种亲本多为亲缘关系近、遗传基础狭窄的育成品种或高代品系[160],分子标记的多态性较低,再加上小麦三个亚基因组间相似度较高,PCR扩增经常相互干扰,所以已开发的分子标记有可能丧失多态性。通过与育种者和分子标记开发单位结合,通过检测育种亲本和载体材料,对已报道分子标记的有效性进行验证,可以确定分子标记是否适用于某育种亲本或育种群体。对于存在假阳性结果的分子标记,在没有更好的分子标记之前,仍可作为选择参考。对于功能标记,由于其位于基因内部,检测的位点是引起表型变异的原因,在开发时对基因功能已有完整解析,对等位基因变异进行了大量检测[7,14],因此可以在不同材料、不同群体间通用,不需要再验证,是今后分子标记开发的方向。其次,要系统开展育种亲本的大规模分子标记检测,以摸清育种亲本的基因型组成,为亲本组配提供参考。育种亲本是优良基因的载体,只有明确了育种亲本含有的等位基因类型,才能利用分子标记辅助选择技术将其中的优异等位基因快速回交转育到新的品种(系)中。因此,充分了解亲本的基因型组成,是进行分子育种的关键。早期开发的SSR等分子标记需要在PCR反应后进行电泳分离、染色和带型统计,步骤较多,不利于大规模应用和降低检测成本。SNP标记被称为第三代分子标记,其在基因组中数量多、分布广、可实现大规模自动化检测,是最具发展潜力的分子标记[161]。SNP检测平台已开发较多,英国LGC公司开发的KASP平台因其精度高、硬件要求低、成本低廉、检测通量灵活[162],近年来被广泛使用。开发新的基于KASP平台的SNP标记和转换已有的非SNP标记,有利于分子标记的规模化应用。再次,随着SNP芯片和测序技术的开发利用,在基因型数据获取容易的今天,表型数据的获得成为基因功能研究的瓶颈。利用现有的研究资源,在不同的生态区建立抗旱、抗病、抗虫等不同的表型鉴定试验站,建立表型鉴定网络平台以获取大量的表型数据将成为今后的建设重点。
小麦上已开发的分子标记常被用于检测品种或高代品系的等位基因分布情况,真正用于育种的报道很少[6]。一方面,作为基因供体的分子标记原始载体材料分别被保存在标记的研发单位,真正需要这些优异材料作为育种亲本的育种家不能及时获得这些资源。另一方面育种家往往没有合适的分子标记载体材料的获取渠道,因为科研人员一般不愿共享载体材料[163],这也是本研究收集原始载体材料较少的原因之一。类似的情况还有不同的科研机构都在利用公布的分子标记对育种亲本进行检测评价,而相关文献报道却没有公布检测数据,使得不同单位之间存在大量的重复性工作,造成了人力、物力和时间的大量浪费,因此小麦分子标记数据库建立后,需要逐步将分散在不同科研机构的骨干亲本的基因型、表型数据整合到数据库中,参考国家水稻数据中心网站,开发小麦分子育种网站。本研究广泛征集含有抗病、优质、高产等优异基因的小麦供体育种亲本及其分子信息构建综合性数据库,为小麦分子育种共享平台提供基础数据。早在2001年Sanford等[164]提出成立美国基因型鉴定中心,现在隶属于美国农业部分散在四个区域的基因型鉴定中心每年都为全美国的育种家提供100多个分子标记的检测服务,极大地促进了美国分子育种的发展。小麦分子数据库的建立應以育种应用为目标,从资源基因型组成、优异基因获取、分子标记跟踪检测服务几个方面,为育种者提供全方位的服务。上游研发工作主要进行新基因的克隆和新标记的开发,研发出来的基因和标记将无偿提供给中游的分子诊断中心,为下游的育种单位提供基因型诊断服务,加速高产、优质、抗逆小麦新种质和新品种的选育进程。促使育种工作尽快完成从常规到因水平的提升与突破,对于推动我国小麦商业化育种的快速发展、增强种业发展后劲和国际竞争力具有非常重要的意义。参考文献:
[1]Gupta P K, Kumar J, Mir R R, et al. Marker-assisted selection as a component of conventional plant breeding [M]. Hoboken, N J, USA: John Wiley & Sons, Inc., 2010:145-217.
[2]刘志文, 傅廷栋, 刘雪平, 等. 作物分子标记辅助选择的研究进展、影响因素及其发展策略[J]. 植物学通报, 2005, 22(Z1):82-90.
[3]Staub J E, Serquen F C, Gupta M. Genetic markers, map construction, and their application in plant breeding [J]. HortScience, 1996, 31(5):729-741.
[4]Paux E, Sourdille P, Salse J, et al. A physical map of the 1-gigabase bread wheat chromosome 3B [J]. Science, 2008, 322(5898):101-104.
[5]Chao S, Sharp P J, Worland A J, et al. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes [J]. Theoretical and Applied Genetics, 1989, 78(4):495-504.endprint
[6]Gupta P K, Langridge P, Mir R R. Marker-assisted wheat breeding: present status and future possibilities [J]. Molecular Breeding, 2010, 26(2):145-161.
[7]Bagge M, Xia X, Lubberstedt T. Functional markers in wheat [J]. Current Opinion in Plant Biology, 2007, 10(2):211-216.
[8]Ma L, Li T, Hao C, et al. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield [J]. Plant Biotechnology Journal, 2016, 14(5):1269-1280.
[9]何中虎, 夏先春, 陳新民, 等. 中国小麦育种进展与展望[J]. 作物学报, 2011, 37(2):202-215.
[10]Andersen J R, Lübberstedt T. Functional markers in plants [J]. Trends in Plant Science, 2003, 8(11):554-560.
[11]Marcussen T, Sandve S R, Heier L, et al. Ancient hybridizations among the ancestral genomes of bread wheat [J]. Science, 2014, 345(6194):1250092.
[12]Consortium I W G S. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome [J]. Science, 2014, 345(6194):1251788.
[13]Liu Y, He Z, Appels R, et al. Functional markers in wheat: current status and future prospects [J]. Theoretical and Applied Genetics, 2012, 125(1):1-10.
[14]Rasheed A, Wen W, Gao F, et al. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat [J]. Theoretical and Applied Genetics, 2016, 129(10):1843-1860.
[15]Chai J F, Zhou R H, Jia J Z, et al. Development and application of a new codominant PCR marker for detecting 1BL·1RS wheat-rye chromosome translocations [J]. Plant Breeding, 2006, 125:302-304.
[16]De Froidmont D. A co-dominant marker for the 1BL/1RS wheat-rye translocation via multiplex PCR [J]. Journal of Cereal Science, 1998, 27:229-232.
[17]Liu C, Yang Z J, Li G R, et al. Isolation of a new repetitive DNA sequence from Secale africanum enables targeting of Secale chromatin in wheat background [J]. Euphytica, 2008, 159:249-258.
[18]Kofler R, Bartos J, Gong L, et al. Development of microsatellite markers specific for the short arm of rye (Secale cereale L.) chromosome 1 [J]. Theoretical and Applied Genetics, 2008, 117(6):915-926.
[19]Nakamura S, Abe F, Kawahigashi H, et al. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination [J]. Plant Cell, 2011, 23(9):3215-3229.
[20]Yang Y, Zhao X L, Xia L Q, et al. Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheats [J]. Theoretical and Applied Genetics, 2007, 115(7):971-980.endprint
[21]Zhang Y, Miao X, Xia X, et al. Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker [J]. Theoretical and Applied Genetics, 2014, 127(4):855-866.
[22]Wei B, Jing R, Wang C, et al. Dreb1 genes in wheat (Triticum aestivum L.): development of functional markers and gene mapping based on SNPs [J]. Molecular Breeding, 2009, 23(1):13-22.
[23]Zhang J, Xu Y, Chen W, et al. A wheat 1-FEH w3 variant underlies enzyme activity for stem WSC remobilization to grain under drought [J]. New Phytologist, 2015, 205(1):293-305.
[24]Byrt C S, Platten J D, Spielmeyer W, et al. HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1 [J]. Plant Physiology, 2007,143(4):1918-1928.
[25]Huang S, Spielmeyer W, Lagudah E S, et al. A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat [J]. Plant Physiology, 2006, 142(4):1718-1727.
[26]James R A, Blake C, Byrt C S, et al. Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions [J]. Journal of Experimental Botany, 2011, 62(8):2939-2947.
[27]Jaiswal V, Gahlaut V, Mathur S, et al. Identification of novel SNP in promoter sequence of TaGW2-6A associated with grain weight and other agronomic traits in wheat (Triticum aestivum L.) [J]. PLoS One, 2015, 10(6):e0129400.
[28]Jiang Q, Hou J, Hao C, et al. The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits [J]. Functional & Integrative Genomics, 2011, 11(1):49-61.
[29]Jiang Y, Jiang Q, Hao C, et al. A yield-associated gene TaCWI, in wheat: its function, selection and evolution in global breeding revealed by haplotype analysis [J]. Theoretical and Applied Genetics, 2015, 128(1):131-143.
[30]Lu J, Chang C, Zhang H P, et al. Identification of a novel allele of TaCKX6a02 associated with grain size, filling rate and weight of common wheat [J]. PLoS One, 2015, 10(12):e0144765.
[31]Ma D, Yan J, He Z, et al. Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers [J]. Molecular Breeding, 2012, 29(1):43-52.
[32]Su Z, Hao C, Wang L, et al. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2011, 122(1):211-223.endprint
[33]Yue A, Li A, Mao X, et al. Identification and development of a functional marker from 6-SFT-A2 associated with grain weight in wheat [J]. Molecular Breeding, 2015, 35(2):1-10.
[34]Zhang Y, Liu J, Xia X, et al. TaGS - D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat [J]. Molecular Breeding, 2014, 34(3):1097-1107.
[35]Hanif M, Gao F, Liu J, et al. TaTGW6 - A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat [J]. Molecular Breeding, 2016, 36(1):1-8.
[36]Spielmeyer W, Richards R A. Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S [J]. Theoretical and Applied Genetics, 2004, 109(6):1303-1310.
[37]Beales J, Turner A, Griffiths S, et al. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2007, 115(5):721-733.
[38]Nishida H, Yoshida T, Kawakami K, et al. Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect on heading time [J]. Molecular Breeding, 2013, 31(1):27-37.
[39]Wilhelm E P, Turner A S, Laurie D A. Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.) [J]. Theoretical and Applied Genetics, 2009, 118(2):285-294.
[40]Ellis H, Spielmeyer W, Gale R, et al. “Perfect” markers for the Rht-B1b and Rht-B1b dwarfing genes in wheat [J]. Theoretical and Applied Genetics, 2002, 105(6/7):1038-1042.
[41]Korzun V, Rder M S, Ganal M W, et al. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part Ⅰ. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.) [J]. Theoretical & Applied Genetics, 1998, 96(8):1104-1109.
[42]Chen Y, Carver B F, Wang S, et al. Genetic regulation of developmental phases in winter wheat [J]. Molecular Breeding, 2010, 26(4):573-582.
[43]Chen Y, Carver B F, Wang S, et al. Genetic loci associated with stem elongation and winter dormancy release in wheat [J]. Theoretical and Applied Genetics, 2009, 118(5):881-889.
[44]Chu C G, Tan C T, Yu G T, et al. A novel retrotransposon inserted in the dominant Vrn-B1 allele confers spring growth habit in tetraploid wheat (Triticum turgidum L.) [J]. G3: Genes, Genomes, Genetics, 2011, 1(7):637-645.endprint
[45]Díaz A, Zikhali M, Turner A S, et al. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum) [J]. PLoS One, 2012, 7(3):e33234.
[46]Fu D, Szucs P, Yan L, et al. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat [J]. Molecular Genetics and Genomics, 2005, 273(1):54-65.
[47]Milec Z, Tomková L, Sumíková T, et al. A new multiplex PCR test for the determination of Vrn-B1 alleles in bread wheat (Triticum aestivum L.) [J]. Molecular Breeding, 2012, 30(1):1-7.
[48]Yan L, Fu D, Li C, et al. The wheat and barley vernalization gene VRN3 is an orthologue of FT [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(51):19581-19586.
[49]Yan L, Helguera M, Kato K, et al. Allelic variation at the VRN-1 promoter region in polyploid wheat [J]. Theoretical and Applied Genetics, 2004, 109(8):1677-1686.
[50]Kausar S, Hameed S, Haque I U, et al. Molecular confirmation of Bdv2 gene in wheat germplasm and its field based assessment for resistance against barely yellow dwarf viruses [J]. Supervision Test & Cost of Construction, 2015, 3(1):16-22.
[51]Kong L, Anderson J M, Ohm H W. Segregation distortion in common wheat of a segment of Thinopyrum intermedium chromosome 7E carrying Bdv3 and development of a Bdv3 marker [J]. Plant Breeding, 2009, 128(6):591-597.
[52]Stoutjesdijk P, Kammholz S J, Kleven S, et al. PCR-based molecular marker for the Bdv2 Thinopyrum intermedium source of Barley yellow dwarf virus resistance in wheat [J]. Crop & Pasture Science, 2001, 52(12):1383-1388.
[53]Zhang Z, Xu J, Xu Q, et al. Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker-assisted selection [J]. Theoretical and Applied Genetics, 2004, 109(2):433-439.
[54]Anderson J A, Stack R W, Liu S, et al. DNA markers for Fusarium head blight resistance QTLs in two wheat populations [J]. Theoretical and Applied Genetics, 2001, 102:1164-1168.
[55]Bernardo A N, Ma H, Zhang D, et al. Single nucleotide polymorphism in wheat chromosome region harboring Fhb1 for Fusarium head blight resistance [J]. Molecular Breeding, 2012, 29(2):477-488.
[56]Cuthbert P A, Somers D J, Brule-Babel A. Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2007, 114(3):429-437.endprint
[57]Liu S, Pumphrey M O, Gill B S, et al. Toward positional cloning of Fhb1, a major QTL for Fusarium head blight resistance in wheat[J]. Cereal Research Communications, 2008, 36:195-201.
[58]Qi L L, Pumphrey M O, Friebe B, et al. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat [J]. Theoretical and Applied Genetics, 2008, 117(7):1155-1166.
[59]Xue S, Li G, Jia H, et al. Fine mapping Fhb4 , a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2010, 121(1):147-156.
[60]Xue S, Xu F, Tang M, et al. Precise mapping Fhb5 , a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2011, 123(6):1055-1063.
[61]Zhu X, Zhong S, Chao S, et al. Toward a better understanding of the genomic region harboring Fusarium head blight resistance QTL Qfhs.ndsu-3AS in durum wheat [J]. Theoretical and Applied Genetics, 2016, 129(1):31-43.
[62]Helguera M, Khan I A, Dubcovsky J. Development of PCR markers for the wheat leaf rust resistance gene Lr47 [J]. Theoretical and Applied Genetics, 2000, 101(4):625-631.
[63]Huang L, Gill B S. An RGA-like marker detects all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat [J]. Theoretical and Applied Genetics, 2001, 103(6):1007-1013.
[64]Prins R, Groenewald J Z, Marais G F, et al. AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat [J]. Theoretical and Applied Genetics, 2001, 103(4):618-624.
[65]Helguera M, Khan I A, Kolmer J, et al. PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines [J]. Crop Science, 2003, 43(5):1839-1847.
[66]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2004, 109(6):1105-1114.
[67]Helguera M, Vanzetti L, Soria M, et al. PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines [J]. Crop Science, 2005, 45(2):728-734.
[68]Lagudah E S, Mcfadden H, Singh R P, et al. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat [J]. Theoretical and Applied Genetics, 2006, 114(1):21-30.endprint
[69]Rosewarne G M, Singh R P, Huerta-Espino J, et al. Leaf tip necrosis, molecular markers and β1-proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29 [J]. Theoretical and Applied Genetics, 2006, 112(3):500-508.
[70]Gennaro A, Koebner R M, Ceoloni C. A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat [J]. Functional & Integrative Genomics, 2009, 9(3):325-334.
[71]Kuraparthy V, Sood S, See D R, et al. Development of a PCR assay and marker-assisted transfer of leaf rust and stripe rust resistance genes Lr57 and Yr40 into hard red winter wheats[J]. Crop Science, 2009, 49(1):120-126.
[72]Lagudah E S, Krattinger S G, Herrera-Foessel S, et al. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens [J]. Theoretical & Applied Genetics, 2009, 119(5):889-898.
[73]Sun X, Bai G, Carver B F. Molecular markers for wheat leaf rust resistance gene Lr41 [J]. Molecular Breeding, 2009, 23(2):311-321.
[74]Fu Y B, Peterson G W, Mccallum B D, et al. Population-based resequencing analysis of improved wheat germplasm at wheat leaf rust resistance locus Lr21 [J]. Theoretical and Applied Genetics, 2010, 121(2):271-281.
[75]Sun X C, Bai G H, Carver B F, et al. Molecular mapping of wheat leaf rust resistance gene Lr42 [J]. Crop Science, 2010, 50(1):59-66.
[76]Herrera-Foessel S A, Singh R P, Huerta-Espino J, et al. Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat [J]. Theoretical and Applied Genetics, 2012, 124(8):1475-1486.
[77]Moore J W, Herrera-Foessel S, Lan C, et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat [J]. Nature Genetics, 2015, 47(12):1494-1498.
[78]Pirseyedi S M, Somo M, Poudel R S, et al. Characterization of recombinants of the Aegilops peregrina-derived Lr59 translocation of common wheat [J]. Theoretical and Applied Genetics, 2015, 128(12):2403-2414.
[79]Cenci A, Tanzarella O, Ceoioni C E, et al. Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat [J]. Theoretical & Applied Genetics, 1999, 98(3/4):448-454.
[80]Liu Z, Sun Q, Ni Z, et al. Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat [J]. Plant Breeding, 1999, 118(3):215-219.
[81]Ma Z Q, Wei J B, Cheng S H. PCR-based markers for the powdery mildew resistance gene Pm4a in wheat [J]. Theoretical and Applied Genetics, 2004, 109(1):140-145.endprint