一张大网为你盯紧核辐射
2017-12-22本刊主笔季天也
◎本刊主笔 季天也
一张大网为你盯紧核辐射
◎本刊主笔 季天也
对于普通公众来说,与核安全有关的辐射监测显得比较陌生,常涉及一些公众平时很少接触的名词,其中电离辐射的计量单位之多更是让人眼花缭乱。辐射监测都有哪些关键指标?其意义是什么?在哪些地方测?数据的正常/安全范围是多少……本文通过拆解国家核安全局每年发布一次的《全国辐射环境质量报告》,就这些问题说道说道。】
青海、西藏两省区地处高原,稀薄的大气对宇宙射线的屏蔽效果较弱,空气中的辐射水平明显高于东部平原地区。
实时紧盯空气吸收剂量
2007年,环保部建起了国家辐射环境监测网,开展的监测覆盖了辐射环境质量监测、国家重点监管的核设施周围环境监督性监测和核事故应急监测。根据监测场所的不同,监测指标的种类、数量和要求也各不一样。
首先是和公众生活关系最直接的一项指标——空气吸收剂量率,也就是单位时间内空气吸收的辐射剂量,计量单位为戈瑞/小时(Gy/h),1戈瑞表示每公斤物质(如空气)吸收了1焦耳(J)的辐射能量。它可直接、快速、连续反映环境辐射水平,是环境辐射监测的一个重要组成部分。按照《全国辐射环境监测方案》的要求,我国104个地级及以上城市(含部分地、州、盟所在地,以下同)的辐射环境自动监测站(下简称“自动站”),可以对空气吸收剂量率进行在线连续监测,每5分钟记录一次实时平均值;237个地级及以上城市的自动监测站能统计一段时间内的累积剂量。
下雨可致辐射量翻倍
由于海拔、经纬度以及环境条件等的不同,不同地区的空气吸收剂量率本底水平有一定差异。比如青海、西藏地处高原,相对稀薄的大气对宇宙射线的阻挡能力较弱,电离辐射强度就高。《2016全国辐射环境质量报告》数据显示,这两地的自动站有一半以上的空气吸收剂量率在150~200纳戈瑞/小时(nGy/h,1戈瑞=10亿纳戈瑞)之间,几乎是全国空气吸收剂量率最高的地方。而北京、上海这些平原地区大多在70~90纳戈瑞/小时浮动。
宁夏固原市的辐射自动监测站
降雨能使地表附近的空气吸收剂量率短时间内翻倍来源:《全国辐射环境质量报告》
对同一个站点来说,天然辐射所致的空气吸收剂量率,会随着降雨、冰雪覆盖、土壤水分、地下水位等自然因素的变化而上下波动。比如降雨会引起空气中氡的子体沉降:氡是一种由天然放射性铀系矿物经亿万年衰变积累而来的放射性气体,但它发生衰变后转化成的子体钋、铋、铅等则是固态放射性物质,这些物质通过雨水的冲刷而落地,能使地表附近的空气吸收剂量率短时间内增加50%~100%,具体程度取决于降雨时间间隔和降雨量。但一般升高持续几小时后又会下降至比平均低约5%的水平,这是因为土壤水分增加,加强了对辐射的屏蔽作用。如果不再降雨,随着土壤水分的减少,空气吸收剂量率会在几小时或几天后回归正常水平。
此外,积雪覆盖也能屏蔽一定辐射,1厘米厚的雪可使空气吸收剂量率降低约1%。
因此,空气吸收剂量率的正常值范围其实是因地制宜的,并没有全国性的统一规定。1983~1990年,原国家环保局开展了全国环境天然放射性水平调查,获得了各省份陆地的空气吸收剂量率和宇宙射线所致空气吸收剂量率。各地的监测结果只要不超过这份调查的数据范围就没有问题,用业内行话就是“处于当地天然本底涨落范围内”。
“气溶胶监测”是个什么鬼
夜光手表就是利用氚元素的放射性来产生荧光的
除了空气吸收剂量率,核安全部门还要监测和公布空气中某些具体放射源,这被称为“大气气溶胶监测”。“气溶胶”其实就是指悬浮在大气中的固体或液体微粒。一方面,地层和建筑物等散逸到空气中的氡衰变生成钋、铋、铅等天然放射性子体,使周围环境中的气溶胶可能含有天然放射性核素。另外,核与辐射设施在正常运行时,向大气环境排放气态流出物,可能会给周围环境中的气溶胶贡献微量的人工放射性核素,比如铯137、锶90等。
气溶胶在大气中随气流而迁移,能在高空成为雨雪的凝聚核心,然后随之降落到地面。沉降于地面的放射性物质又可通过水的蒸发和风力作用重新进入大气。所以,气溶胶中的放射性核素既能对人直接造成外照射,也可因吸入或通过食物链被人体摄入而造成内照射。“放射性活度浓度”,就是监测这些污染物的放射性水平所用的指标,也称“衰变率”,其计量单位是贝可(Bq)/立方米,1贝可的意思是每秒钟有1个放射性原子发生衰变,放射性活度浓度越高说明放射性越强。
在各类气溶胶中,以下两种放射源和普通公众关系比较近。
气碘(元素符号I):碘元素家族有35种同位素,除碘127为稳定核素外,其余都有放射性。其中碘131是人工放射性核素,正常情况下自然界中不会存在。它是核反应的主要裂变产物之一,半衰期比较短(只有8天)还易“挥发”(准确地表述叫“升华”),不仅是反应堆周围环境的监测指标,也是核武器试验和反应堆事故的信号核素。目前在局部环境可监测到的微量碘131主要来自同位素生产、相关医疗机构和反应堆运行。
氚(元素符号T):氢的放射性同位素,既是天然放射性核素,又是人工放射性核素。氚的天然来源是高能宇宙射线同大气中氮和氧的相互作用,但含量少得可以忽略不计。核爆炸试验、核电站及核燃料后处理厂等才是氚的主要来源。在环境中的氚99%以上都以氚化水(正常水分子中的一个氢原子被氚原子替代)的形式存在。所以在辐射环境监测中,氚的监测一般仅考虑这一形态,在空气监测方面指的就是含氚的水蒸气。
我国居民日常受到的电离辐射剂量比例示意图
2016年全国各地的饮用水源地水的总β放射性水平没有超标来源:《全国辐射环境质量报告》
截至2016年底,全国有93个地级及以上城市开展了气溶胶监测,其中直辖市和省会城市还进行大气沉降物、空气和降水中的氚、气态放射性碘(以下简称“气碘”)的监测。根据《2016全国辐射环境质量报告》的统计,这些气溶胶放射性指标在2016年一切正常。
水体辐射监测看总量控制
说完了空气,再来说说水方面的辐射监测。水体监测范围包括长江、黄河、珠江、松花江、淮河、海河、辽河七大江河流域以及西南和西北诸诃、浙闽片河流,20座湖泊(水库),327个地级及以上城市的集中式饮用水水源地,29个城市的地下水,沿海11个省份的海水和海洋生物监测。核心监测指标是总α活度浓度和总β活度浓度。
所谓的α/β说的是能衰变放出α射线或β射线的放射性核素。它不针对水体中具体某种核素的活度浓度,而是测量所有α放射性核素或β放射性核素带来的总体放射性水平。国家核安全局的资料显示,总放射性测量方法简便、快速、成本低,又能很快出结果,因此对大量放射性监测样品的快速筛选十分有用。如果所测水样的总α或总β放射性活度浓度处在正常范围,就不用再单独分析测量每种放射性核素了,从而节省大量时间、人力和物力。我国现行的饮用水新国标——《生活饮用水卫生标准》(GB 5749-2006),在放射性指标方面也只是规定了总α/β的活度浓度限量,分别是0.5贝可/升和1贝可/升。
在这个基础上,核安全部门还要进一步监控铀、钍、镭226、锶90、铯137等具体的放射性核素。其中铀、钍是核燃料的来源,它们的衰变速度较慢,已经在地球上存在了数十亿年;镭226是铀和钍衰变的产物,它再衰变就是放射性气体氡222,同辐射安全关系密切;锶90、铯137是人工放射性核素,能反映核设施运行是否安全无泄漏,而且相对容易被生物吸收,所以也是监控重点。
和空气一样,2016年的水体辐射监测结果表明,各饮用水水源地的上述指标都是正常水平,总α和总β活度浓度也没有突破饮用水国标的限制。
土壤监测同样重要。表层的放射性物质对人直接造成外照射,农作物的根系则会将土壤中的放射性物质吸到可以吃的部分,对人体造成内照射。另外土壤表层颗粒和放射性沉积物被风扬起,又会经呼吸途径造成内照射。土壤放射性的来源主要是地球上原生的天然放射性矿藏以及大气核试验和切尔诺贝利核事故留下的沉降物。目前土壤监测覆盖全国331个地级及以上城市,主要监测铀238、钍232、镭226和铯137。从2015年和2016年的全国辐射环境质量报告来看,这几个指标均没有超出正常值。
核电监测网全方位严防死守
比起普通环境的气、水、土监测,核电基地周围辐射监测属于监督性监测,要求更严。有专门的《全国辐射环境监测方案》《辐射环境监测技术规范》(HJ/T 61-2001)进行规定,监测网络可以说是全方位多维度严密布点。比如在核电厂区边界、地面最大浓度处、关键居民点都布设空气吸收剂量率在线连续监测点;监测厂界20公里范围内的累积剂量;在液态流出物排放口、主导下风向或排水口下游灌溉区设置监测点,着重加强藻类、贝壳类、松针、茶叶等放射性指示生物(对某一环境特征敏感、具有指示特性的生物)的监测;厂界10公里范围内16个方位角布设土壤监测点和环境样品对照点。
这种监测的重点是核电站释放的人工放射性核素,通过与辐射本底水平对比,掌握核电站正常运行对周围环境和附近居民产生的实时影响和长期累积趋势影响,更能第一时间监控异常状况和突发事件。
我国的电离辐射环境监测网示意图
碘虽然是固体,但是很容易升华成紫色的气态碘逸散到空气中。监测空气中的放射性碘可以有效掌握核设施运行对环境的辐射影响。
氡是仅次于吸烟的第二大肺癌诱因,每人每年受到的天然电离辐射有一半是氡及其衰变产物贡献的。
公众受照:天然氡污染占一半
具体到环境辐射和放射源对人体健康的影响,还有个“有效(吸收)剂量”的概念,用来反映该剂量的辐射危害大小,也叫当量剂量或照射(受照)剂量,单位是希沃特(Sv,曾译作西弗),简称希。联合国原子辐射效应科学委员会(UNSCEAR)的报告指出,全球天然电离辐射源所致的个人有效剂量为1~13毫希/年,平均2.4毫希/年。我国大约为3.1毫希/年,其中有一半是氡及其子体的内照射贡献的。氡作为天然辐射源中唯一的气态放射性物质,仗着放射性活跃和气体扩散优势,是对普通公众健康威胁最大、影响最普遍的放射性元素。
至于核电站、核医疗、工业用放射源这类人为活动带来的辐射剂量,国标《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)有专门规定:公众受到的年平均有效剂量不得超过1毫希,涉核职业工作者则为连续5年的年平均有效剂量不超过20毫希。同时,根据《核动力厂环境辐射防护规定》(GB 6249-2011)的要求,我国核电站必须以反应堆为单位控制厂区的年排放总量,每座核电站向环境释放的放射性物质对公众带来的个人有效剂量要小于0.25毫希/年,实际也确实做到了。
中国已摆脱福岛核事故影响
由于管控严格,核电站正常运行造成的辐射并不大。《2016全国辐射环境质量报告》还指出,环境中的人工放射性核素锶-90和铯-137,主要为20世纪大气层核试验和切尔诺贝利核事故的残留。切尔诺贝利核事故是核电历史上最严重的事故,前苏联、北欧、西欧等国家的广大地区都受到明显的污染,我国也受到不同程度的牵连。日本福岛核事故虽与切尔诺贝利核事故的事故等级同为7级,但两者事故的状态不完全相同,福岛的放射性物质释放量比切尔诺贝利小得多。2011年3月11日事故发生后,我国全国范围内陆续检测到碘-131、铯-137和铯-134等人工放射性核素,但从同年4月底至今,这起事故对我国环境中人工放射性核素活度浓度的测量结果已经“无可探测到的影响”。
本栏目责编/季天也jtyair2013@vip.163.com