生物质炭对有机污染物的吸附及机理研究进展*
2017-12-11李晓娜贾明云卞永荣
李晓娜 宋 洋 贾明云 王 芳 卞永荣 蒋 新†
(1 土壤环境与污染修复重点实验室(中国科学院南京土壤研究所),南京 210008)
(2 中国科学院大学,北京 100049)
生物质炭对有机污染物的吸附及机理研究进展*
李晓娜1,2宋 洋1贾明云1王 芳1卞永荣1蒋 新1†
(1 土壤环境与污染修复重点实验室(中国科学院南京土壤研究所),南京 210008)
(2 中国科学院大学,北京 100049)
生物质炭是一种利用废弃生物质材料在缺氧或厌氧环境中热化学转换制备的多孔级富碳固体材料。因其吸附能力强,制备原料来源广泛,生产成本低且环境友好等优点受到学术界越来越多的关注。探究生物质炭对有机污染物的吸附机理和规律,对于评估其环境行为和应用价值至关重要。着重综述了目前研究报道的生物质炭吸附有机污染物的吸附机理,包括分配作用、表面吸附作用和孔隙截留等。一般低温生物质炭对非极性有机物的吸附机制以分配作用为主,这种非竞争性吸附机理可以解释高浓度有机污染物在生物质炭上的吸附过程。表面吸附是一种非线性竞争性吸附作用,是有机污染物在生物质炭表面有效吸附位点上形成静电作用或通过氢键、离子建、π-π相互作用等结合的过程。孔隙截留是另一种生物质炭固定有机污染物的微观机制,有机污染物在孔隙内部的分配和吸附也是生物质炭吸附能力的重要体现。而在实际复杂的污染环境中,各类生物质炭对有机污染物的吸附过程需要多种机制共同解释。此外,本文对吸附机制的影响因素进行了分析和总结,生物质炭自身理化特性决定了其应用价值,生物质炭的性质与有机污染物的极性、芳香性和分子大小等相匹配才能更好地实现吸附固定,不同的吸附环境如吸附介质、pH和共存离子等也会对吸附机制和吸附效果产生影响。最后,文章进一步探讨了生物质炭吸附有机污染相关研究未来应着重解决的问题,以及生物质炭在有机污染土壤修复中的应用前景。
生物质炭;有机污染物;吸附特性;吸附机理
随着工农业的快速发展,工业废物、农药、化肥及激素类物质的环境输入不断增加,具有高毒性、高累积、难降解、可远距离迁移的有机污染物,一旦进入食物链会对人类健康造成明显的“三致”效应。对此类有机物污染土壤的治理与修复,已成为社会关注的热点问题。土壤中污染物的生物有效性及迁移转化是影响其环境风险的重要因素,同时由于我国人多地少的特点,开展污染土壤的原位修复与治理至关重要。因此,原位吸附阻控污染物,降低其生物有效性,控制其向食物链中迁移是一种环境友好、安全高效的污染土壤修复措施。
生物质炭作为热解、炭化合成的主要不完全燃烧产物,是一种稳定的富碳物质,被称为超级吸附剂[1]。不完全燃烧决定了生物质炭碳质组成的异质性,与土壤中本土有机质共同吸附有机污染物,对包括多环芳烃、多氯联苯、芳香硝基化合物等各种有机污染物具有强烈吸附能力。研究表明,生物质炭具有高比表面、强电子交换性、多孔隙和丰富碳质组分等独特结构,相比天然存在碳形式,生物质炭对有机污染物的吸附能力极高[2-3]。此外,生物质炭制备原料来源广,成本低,制备工艺操作简便,在改善土壤质量、提高作物品质、高效利用废弃资源等方面具有很好的效益,受到科学家们的重视,在有机污染土壤修复中有巨大应用潜力。
生物质炭独特理化性质是其强吸附性能的关键,制备工艺和原料类型是影响生物质炭理化特性的重要因素[4]。研究不同原料和制备工艺下生物质炭的吸附特性,揭示生物质炭吸附有机污染物的机理,为生物质炭在有机污染土壤修复中的合理应用提供理论指导。本文在阐述生物质炭吸附效能和吸附特性的基础之上,着重综述了生物质炭-有机污染物相互作用机理及影响因素,并对目前生物质炭在有机污染土壤修复中的应用所存在的问题进行了分析,进一步展望了未来相关研究的发展。
1 生物质炭吸附效果与特性
生物质炭是具有比表面积大,孔隙结构发达、表面官能团丰富和芳香度高等特性的富碳材料,可以稳定吸附固持污染物,降低其生物有效性,缓解环境风险,同时其所含的丰富养分成分可以起到保肥固氮、提高土壤肥力的作用,这是生物质炭实现污染土壤边治理边生产的关键[5-9]。研究表明,燃烧农业残渣制备生物质炭对敌草隆的吸附是土壤的400倍~2500倍,可有效控制这类有机农药的迁移和环境污染[10]。较大的比表面积为有机污染物的吸附提供可能,一般木质材料生物质炭具有更丰富的微孔结构,比表面积高于500 m2g-1,而以秸秆或固体废物为原料制备的生物质炭以中孔结构为主,相对比表面积也较低,在130~310 m2g-1之间[11-12]。研究表明,不同生物质原料对有机污染物吸附能力(Qe)与比表面积变化一致,孔隙形态以微孔为主的生物质炭,相对比表面积也较大,相比以大、中孔隙为主的生物质炭具有更强的表面吸附和微孔填充能力,更高的饱和吸附量[13-14]。此外,生物质炭表面丰富的含氧官能团在一定程度上影响其表面的电子得失、阳离子交换量(CEC)、极性和稳定性,且伴随着老化过程有脂肪族官能团减少而羰基官能团显著增多的趋势,因此生物质炭极性增强,极性官能团是其与极性有机污染物相互作用的关键[15-17]。吴晴雯等[18]利用傅里叶红外光谱(Fourier Transform Infrared Spectroscopy,FTIR)对比芦苇生物质炭吸附1,1-二氯乙烯(1,1-DCE)前后表面官能团变化,表明有机物与-OH、C=C、C=O和C-H等官能团成键和π-π相互作用是主要吸附机制,生物质炭对水溶液中1,1-DCE的去除率高达90%。Wu等[19]利用FTIR和核磁共振(Nuclear Magnetic Resonance,NMR)检测500℃热解水稻秸秆生物质炭官能团,发现C=C、C=H等芳香化官能团含量高达98.5%,其中C-O芳香化结构含量为24.7%。高度芳香性是生物质炭与难降解有机污染物π-π相互作用的内在原因[20-21]。
生物质炭不仅吸附容量大,而且对有机污染物的固持具有稳定性。芳香结构和无定形乱层微晶结构共同决定了生物质炭可以长期存在于土壤中,并随着生物质炭吸附态污染物的“老化”,长效阻控其生态风险[22]。Kuzyakov等[23]通过14C同位素标记来追踪碳的迁移转化,发现生物质炭在土壤中半衰期大约为1400年。余向阳等[24-25]研究发现,向敌草隆污染农田土壤中添加生物质炭可提高土壤农药吸附量5倍~125倍,且吸附56 d后农药解吸率降低96%。Jones等[26]研究表明,随生物质炭添加量的增加,西玛津半衰期显著增长,1%添加比可延长其半衰期高达66%,且生物质炭吸附能力并不随老化过程而减弱。将生物质炭添加至莠去津污染农田土壤中,随着生物质炭的添加比增大和培养时间的延长,0.01 mol L-1CaCl2可提取态莠去津浓度显著降低,蚯蚓对其吸收也降低了73%,这表明生物质炭外源添加到土壤中可显著降低污染物生物有效性[27]。另有研究表明,添加1%小麦秸秆生物质炭显著抑制了土壤中氯苯的消解,这与生物质炭降低氯苯的生物有效性有关[28]。土壤中外源添加生物质炭可显著减少污染物向植物体内迁移,从而降低其生态风险[29]。生物质炭对土壤中污染物的吸附-解吸行为,对污染物生物有效性的影响一直是其环境行为研究的热点,由于生物质炭性质差异其对有机污染物的吸附效果和机理也具有区别,总结已有研究的生物质炭吸附特征和机理很有必要。
2 生物质炭对有机污染物的吸附机理
研究生物质炭对有机污染物的吸附机制和规律,对评估其环境行为和应用价值具有重要指导意义。目前,已有的研究表明吸附机理主要包括分配作用、表面吸附和孔隙截留三种,而在复杂的污染环境及多样的生物质炭类型条件下,多种吸附机理共同作用才能完全解释有机污染物的吸附过程,表1总结了一些生物质炭对常见有机污染物的吸附作用及机理。
表1 生物质炭对有机污染物吸附作用及机理Table 1 Summary of functions and mechanisms of biochar adsorbing organic contaminants
2.1 分配作用
分配作用是Chiou等[46]研究非离子有机化合物在土壤中的吸附过程时首次提出的简单线性吸附过程,是分子间弱的相互作用,是有机物可以分配到土壤有机质中,而不是在表面吸附位点上的吸附。污染物在有机质中的分配系数(Kom)与其辛醇-水分配系数(Kow)之间呈现明显的线性关系,因此,研究者认为分配作用是有机污染物根据“相似相溶”原理在亲水相和疏水相之间的分配,该过程主要取决于土壤中有机质含量,与土壤颗粒表面积无关[47-50]。Huang等[51]认为,分配作用主要是由生物质炭与有机污染物的“匹配性”和“有效性”决定的,两者极性相符,具有高匹配性,则主要发生分配作用过程;而有效性一方面是指无定形有机碳对有机污染物的有效“溶解”,另一方面指高浓度有机物质在生物质炭表面吸附有效性降低,此时主要发生非竞争性分配作用。
有机污染物在生物质炭有机碳中的分配作用与其极性和芳香性紧密相关,一般用H/C和(N+O)/C原子比分别表示生物质炭芳香性和极性,H/C值越小,生物质炭芳香性越强,而(N+O)/C值越大,极性越强[17]。随着热解温度升高,生物质炭比表面积增大,极性减弱而芳香性增强。不同热解温度生物质炭对4-硝基甲苯的吸附研究结果表明,低温(<300℃)生物质炭比表面积小,吸附等温线呈现线性,以分配作用为主,且Kom与(N+O)/C负相关,说明生物质炭极性越小对弱极性有机污染物的分配作用越强,两者之间极性的匹配更有利于有机污染物的吸附;而Kom与H/C正相关,说明芳香碳不利于有机污染物的有效“溶解”,高度芳香性的生物质炭对有机污染物分配作用较弱[14,52]。此外,低温热解炭中灰分含量高,无机矿物占据了表面有效吸附位点,有机污染物的吸附机理以非竞争性分配作用为主;高浓度有机物的吸附等温线呈线性,也正是由于生物质炭表面达到吸附位点饱和,此时非竞争性表面分配作用为主要吸附机制[14,38,53]。生物质炭表面极性官能团的亲水性在其表面形成水膜包裹,阻碍了污染物与吸附位点的有效接触,为分配作用提供了可能[54]。近年来,Chiou等[36]通过向吸附质中添加对硝基酚(PNP)置换液,对比添加前后生物质炭对邻二甲苯(XYL)和1,2,3-三氯苯(TCB)这类非极性和弱极性有机物质的吸附等温线变化,用实验方法直接得出分配作用在吸附过程中所占比例,结果表明泥炭对XYL和TCB的吸附完全为分配作用,低温热解(100℃和250℃)制备的松针生物质炭和柴油烟灰生物质炭(SRM-2975和SRM-1650)对XYL和TCB的吸附也以分配作用过程为主,此类生物质炭共性在于均具有低比表面积,弱芳香性和丰富的表面极性官能团。
综上所述,低温制备生物质炭对非极性或弱极性有机物质的吸附,尤其当污染物浓度高于生物质炭表面最大承载量时,吸附机理以非竞争性分配作用为主。
2.2 表面吸附
表面吸附是有机污染物与生物质炭表面分子结构相互作用的又一种重要吸附机理,是吸附质在生物质炭这种具有丰富表面极性官能团和巨大相对比表面积的特殊材料表面吸附位点上富集的现象,是生物质炭超强吸附能力的主要贡献部分。根据吸附剂与吸附质之间相互作用力差异可将其分为物理吸附和化学吸附,吸附热力学表面自由能变化小于40 kJ mol-1以物理吸附为主,反之则以化学吸附为主[55]。
静电吸附是最常见的物理吸附,是有机污染物与生物质炭表面含氧官能团的弱相互作用。Zheng等[44]研究发现,酸性环境下生物质炭对莠去津吸附作用更强,推测是由于污染物的质子化作用,导致与生物质炭表面负电荷静电相互作用增强所致。臭氧氧化活性炭表面官能团使得其零电荷点(pHpzc)减小,当吸附环境pH高于pHpzc时吸附剂表面带负电荷,与带正电荷吸附质主要发生静电相互作用,吸附能力增强[56]。
化学吸附会伴随化学键(包括氢键、离子偶极键、配位键或π-π键等)的形成或强烈的分子间相互作用。碱性条件下磺胺甲嘧啶(SMT)发生去质子化,与生物质炭表面羧酸盐官能团形成氢键是其吸附的主要机制[57]。生物质炭酸化处理有利于增强其对有机污染物的表面吸附作用。一方面是由于表面酸性含氧官能团(-OH、-COOH)增加,促进与极性有机物之间形成离子键,增强吸附能力;另一方面,酸化增强了对矿物的溶解,暴露更多生物质炭的有效吸附位点,促进表面吸附作用[58-59]。Zhu等[54]对木质生物质炭加氢和再氧化处理,结果表明前后过程萘、菲、芘等有机污染物的吸附并没有发生变化,否定了形成氢键的吸附过程,推测高度芳香性生物质炭与苯环有机化合物之间通过π-π电子供受体(π-π EDA)作用力实现化学吸附过程。早在1968年,Coughlin等[60]发现生物质炭表面的化学吸附氧可以减弱其吸附性能,正是因为强氧化性化学吸附氧对生物质炭本身含有的含氧官能团进行氧化,使其具有更强吸电子能力,与吸附质之间的π-π EDA作用减弱。生物质炭在π-π EDA作用力间既可以作为电子给体,又可以作为电子受体[61]。高温热解生物质炭对五氯苯酚(PCP)的吸附过程中,吸附系数(Kd)与H/C原子比显著负相关,推测芳香碳组分与PCP的苯环结构通过π-π共轭结合,且生物质炭含氧结构少,吸电子能力减弱,更倾向于作π-供体,PCP作为π-受体[21]。
因此,生物质炭表面电负性、酸碱性、芳香性以及污染物性质差异均会影响表面吸附过程。通常,高温热解(>500℃)生物质炭具有高比表面积、低极性和丰富芳香结构,与有机污染物相互作用以表面吸附为主,具体表现为吸附等温线非线性增强[14]。但关于表面吸附过程中具体作用力的研究还不足,实验直接表征方法鲜有报道,推测一般酸性生物质炭因表面H+存在,与有机化合物以静电力作用结合,生物质炭表面极性官能团有利于离子键的形成,而酯类官能团则会促进π-π作用力相互作用[59]。
2.3 孔隙截留
生物质炭是一类以微孔结构为主,多孔级同时存在的非匀质特殊多孔固体材料[62]。微孔的存在是影响有机污染物慢吸附的重要因素,只有通过慢过程扩散进入微孔内部,或者分配进入生物质炭刚性结构内部的污染物才能不可逆被吸附固定,被称为残留态有机污染物[63-65]。锁定作用是有机污染物通过微孔填充作用被生物质炭束缚,降低其生物有效性的关键。被锁定的污染物与土壤中降解生物有效隔离,使其可稳定长期存留于土壤中[64,66]。生物质炭孔隙大小限制其对部分有机污染物的截留作用,孔隙太小会增大对大分子有机污染物的空间位阻,使其很难进入生物质炭内部;孔隙太大,不能有效截留小分子有机污染物。研究表明,木质生物炭(ENC1和NC1)对几种有机污染物的最大吸附量与污染物分子体积呈反比,且凝聚状态为固态的有机污染物(1,4-二氯苯或PAHs)在ENC1上的吸附强于NC1,正是由于ENC1具有更大的比表面积和微孔含量,而凝聚状态为液态的有机污染物(1,2-二氯苯和1,2,4-三氯苯)在两种生物质炭上吸附作用无显著差异[67]。张默等[68]利用颗粒内扩散模型表征玉米生物质炭对萘的吸附均为多重线性,表明孔隙填充对萘的吸附发挥重要作用。孔隙截留并非简单的物理捕获,微孔内表面的亲疏水性也起着重要作用[69-70]。生物质炭孔隙内表面电荷和羟基官能团决定了其具有很强极性,水膜包被生物质炭有利于亲水性有机物的吸附固定。然而,水分子同时也降低了孔隙内亲水基团密度,更有利于疏水性有机物质的孔内分配作用过程[71]。Zhang等[72]研究表明生物质炭对雌二醇的吸附与孔隙结构有关,推测雌二醇主要与孔内基团形成氢键、π-π EDA等相互作用。此外,Braida等[39]采用非定域密度函数理论计算生物质炭孔径、孔隙分布和表面积,表明枫木生物质炭吸附苯会使孔隙发生膨胀,且孔变形是不可逆的。吸附质分子热运动导致孔洞膨胀或生成新的孔洞,使刚性结构微孔难以恢复基态,被吸附的有机污染物也难以摆脱微孔壁的相互作用力,发生不可逆变化,出现吸附质解吸滞后的现象[73-74]。
综上所述,孔隙截留是一种重要的生物质炭吸附固定有机污染物的微观机制,孔径大小、孔隙内官能团组成以及有机污染物的形态与性质均会影响孔隙截留吸附过程,但目前关于多种物质共存环境下生物质炭对有机污染物的孔隙截留少有报道,且生物质炭多孔级结构增大了孔内相互作用力测定的难度,因此很难探讨孔隙截留的具体机制。
2.4 共同作用
显然,单独的分配作用、表面吸附或孔隙截留作用解释生物质炭对有机污染物的吸附过程均存在局限性。因生物质炭特性、有机污染物性质和吸附环境等不同,生物质炭吸附有机污染物的过程存在差异,通常以某种吸附机理为主,多种吸附机理共存。Weber等[75]在1992年提出双吸附-双迁移模型,用分配作用贡献Qp和吸附作用贡献Qad两个参数区分分配作用和吸附作用在有机污染物吸附过程中的贡献。陈宝梁等[14]引用上述模型解释高浓度4-硝基酚在生物质炭上吸附过程,结果表明100℃低温热解生物质炭对其吸附完全为分配作用,随着生物质炭热解温度升高,吸附机理从以分配作用为主转变为以表面吸附作用为主,700℃高温热解生物质炭对有机污染物吸附能力极高,因其比表面积极大,微孔结构居多,孔隙填充机理可以解释Kd剧增的现象,因此,4-硝基酚的复杂吸附过程需要分配作用、表面吸附和孔隙填充机理共同解释。Zhu等[76]定量分析对硝基酚在有机膨润土上的吸附,分配作用和表面吸附共同作用才能完整解释该吸附过程。近年来,Chiou等[36]直接通过实验对比添加PNP前后生物质炭对有机污染物的吸附等温线,区分分配作用和表面吸附在各类生物质炭吸附有机污染物中的占比,有机污染物的吸附过程需分配作用与表面吸附机理共同解释。
3 影响生物质炭吸附有机污染物的因素
生物质炭吸附有机污染物的强度和机制受多种因素影响,生物质炭自身理化特性决定了其应用价值,此外有机污染物的极性、分子大小及吸附环境如环境pH、环境介质、共存物质等也会影响整个吸附过程。
3.1 生物质炭的理化性质
与有机污染物的吸附过程相关的生物质炭理化性质包括比表面积、孔隙结构、元素组成、芳香性、酸碱度和稳定性等,不同的原料种类和制备热解条件是生成性质各异生物质炭的主要原因。一般常见的生物质炭制备原料有木材、松木[77]、花生壳、秸秆、烟杆[78]、芦苇、椰壳[79]、竹子或其他植物类废弃物,动物粪便及污泥等[80]。Lei和Zhang[81]对比木屑和干牛粪原料制备生物质炭的性质,表明前者具有更高的比表面积、芳香性、pH和C/N比,更少的灰分组成,有利于增大土壤持水性,提高生物质炭表面吸附量。原料中木质素含量也会影响生物质炭理化性质,玉米秸秆生物质炭相比小麦秸秆生物质炭具有更高的芳香性、稳定性和碳含量,而其极性和灰分含量相对较低[82]。Crombie等[83]用元素分析法和加速老化法分别对比不同生物质炭的碳素组成,结果表明生物质炭的稳定性与O/C原子比显著正相关,但原料中碳素组成并非主要决定因素,而与制备过程中碳转化效率有关。生物质炭的制备要求严格的厌氧甚至绝氧条件,热解是目前较为常见的制备工艺,热解条件包括停留时间、热解温度和热转化率等对生物质炭的产量、性能和吸附效率均具有重要影响。一般慢速热解条件生物质炭产量最高,芳香性和稳定性更强[84-88]。此外,随着热解温度的升高,生物质炭有机质含量减少,极性减弱,芳香性增强,同时伴有微孔结构增多和比表面积增大,这是由于在此过程中碳形态从无定形态转化为过渡态,再到芳香态最终形成稳定的乱层态,且高温炭化会打开部分阻塞的孔穴,因此,吸附机理也由分配作用为主向表面吸附和微孔截留转变,生物质炭吸附容量增大[14,21,59,81,89-91]。高温条件下生物质表面脂肪烷烃或酯基官能团的分解,引起芳香族木质素的暴露也可能是比表面积增大的原因,疏水性有机污染物分配到丰富的孔隙结构内实现吸附固定[43,92]。生物质炭稳定性决定了其会长期存在于土壤中,伴随着生物质炭的老化,理化性质也会发生变化,对有机污染物的吸附能力会存在差异。研究表明,老化的低温热解生物质炭相比新炭芳香碳含量减小,烷基碳含量增加,极性增强,此外随着表面官能团的解离,有碱性增强,CEC增大的现象,这都会影响菲的吸附过程,而不同热解温度和原料的生物质炭老化过程理化性质变化也有所不同[93]。
3.2 有机污染物性质
有机污染物在生物质炭上的吸附受其极性、疏水性、芳香性、分子大小等因素的影响。吴晴雯等[18]对比芦苇秸秆生物质炭对菲(PHE)和1,1-二氯乙烯(1,1-DCE)的吸附,前者以分配作用为主,后者由于具有更强的极性和较小的分子体积,吸附机理以表面吸附和微孔填充为主,吸附量更大。Cederlund等[94]和Hale[95]等研究表明木质生物质炭对几种杀虫剂、除草剂的吸附存在显著差异,吸附能力为敌草隆>毒死蜱>乙酸类(MCPA)>灭草松>草甘膦,这与有机物亲酯性、极化率和分子大小有关,敌草隆和毒死蜱具有强亲酯性,生物质炭对其吸附能力强,敌草隆以疏水性和范德华力交互作用吸附为主,毒死蜱则以表面吸附固定于生物质炭吸附位点上;MCPA和灭草松吸附强度与生物质炭表面酸度、表面积等有关;草甘膦在被三价铁盐包被的生物质炭表面吸附作用增强,吸附机理以强化学吸附为主。此外,生物质炭芳香结构更易与带苯环结构的有机物生成π-π相互作用力,强烈吸附于生物质炭表面[54]。不同分子大小的污染物因空间位阻作用,在生物质炭上的有效接触和截留效力存在差异,因此吸附机制和吸附效果也不同[67]。可见,生物质炭对不同分子体积和极性的有机污染物吸附机理有所差异,对疏水性有机污染物以疏水分配作用为主,而强极性小分子有机物则通过与生物质炭表面极性官能团相互作用吸附固定,不同分子大小的有机污染物因微孔填充效果不同导致吸附量差异悬殊。
3.3 吸附环境
吸附环境对生物质炭吸附有机污染物的影响主要包括环境pH、环境介质和共存离子等。Teixido等[57]研究不同pH条件下生物质炭对SMT的吸附,pH=1环境下以SMT+为主要存在形式,与生物质炭表面丰富π电子形成π-π电子给体-受体相互作用,而碱性环境中SMT-为主,通过释放OH-形成SMT0,氢键作用是其吸附主要机制。环境介质中的水分子易于表面极性官能团作用形成水膜,阻止有机污染物与生物质炭接触;水分子极性调节污染物表面电荷组成,影响其吸附过程;此外,环境水分波动还会影响生物质炭理化性质,影响其吸附性能。相比恒湿培养,干湿交替老化过程显著降低了生物质炭对邻苯二甲酸二乙酯的吸附作用,这可能与表面基团结构变化有关[96-97]。一般实际污染土壤多为复合污染,Bornemann等[98]研究表明,几种有机物共存会导致生物质炭对各有机污染物的吸附强度均有所下降,这说明有机污染物之间存在竞争吸附效应,共存离子对有机污染物的吸附过程产生影响。
4 研究展望
生物质炭这种绿色吸附材料是有机污染土壤修复的重要手段,目前研究主要包括对杀虫剂、除草剂、医疗废物、染料、工业污染等的吸附治理,但生物质炭种类多样,大部分生物质炭类型目前还只是停留在实验室研究阶段,主要是对溶液或土壤悬液中有机污染物的吸附机理的探究,生物质炭在实际污染土壤修复中的推广仍需要很长的阶段。此外,关于生物质炭的研究在制备原料、制备工艺以及使用方法等方面存在很大差异,生物质炭的真正修复效果很难评价,我国土壤性质分布各有不同,土壤污染种类多样,使生物质炭在实际应用中的筛选变得更加困难。因此,需要探究不同生物质炭理化性质与其吸附机理的相互关系,全面剖析影响生物质炭吸附效果的因素,为生物质炭的广泛应用提供指导依据。生物质炭主要通过降低污染物的生物有效性来阻控其环境风险的,高浓度残留态污染物依然存在于土壤中,具有潜在环境风险[28-29],另有研究指出生物质炭在制备过程中同样存在环境健康影响[99-101],因此,规范生物质炭制备工艺,长期监控生物质炭的环境行为,彻底消解生物质炭中残留的有机污染物很有必要。
为了实现生物质炭对有机污染物吸附的最佳效果,必须探究其对有机污染物的吸附机理,目前已有研究中较为认可的机制主要包括表面吸附、分配作用、孔隙截留和多种机理共同作用。但至今关于具体的吸附机理仍以性质分析和过程推测为主,缺少直接的定性和定量手段。一般通过元素分析、表面积测定(BET-N2)、电动电位测定(Zetapotential)、拉曼光谱(Raman spectra)、FTIR、NMR、扫描电镜分析(Scanning Electron Microscopy,SEM)等手段表征生物质炭理化性质,再与其对有机污染物的吸附效果进行相关性分析,或采用吸附等温线表征该过程,进而推断可能存在的吸附机理,直接采用实验手段准确揭示生物质炭吸附有机污染过程仍少有研究。
综上,未来相关研究应着重解决以下问题:1)实验表征生物质炭吸附过程,深入探讨其对不同物质的吸附机理,进一步剖析影响生物质炭吸附有机污染物的因素,合理施用生物质炭,使其具有最高吸附效能;2)探究生物质炭的生态环境效应,包括对土壤理化性质、土著微生物群落和土壤再利用价值的影响;3)明确生物质炭制备原料和工艺的参数,提高生物质炭性能,可以对生物质炭进行修饰或改性,缓解生物质炭对生态环境的不良影响,拓宽应用范围;4)生物质炭外源添加到土壤中有利于土壤养分循环和生物扰动[84,102-105],联合生物质炭与其他如植物、微生物修复等途径,实现有机污染土壤的高效治理。
[1] Ahmad M,Rajapaksha A U,Lim J E,et al. Biochar as a sorbent for contaminant management in soil and water:A review. Chemosphere,2014,99:19—33
[2] Khorram M S,Zhang Q,Lin D,et al. Biochar:A review of its impact on pesticide behavior in soil environments and its potential applications. Journal of Environmental Sciences,2016,44:269—279
[3] Zhang G,Zhang Q,Sun K,et al. Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures. Environmental Pollution,2011,159(10):2594—2601
[4] 李力,刘娅,陆宇超,等. 生物炭的环境效应及其应用的研究进展. 环境化学,2011,30(8):1411—1421 Li L,Liu Y,Lu Y C,et al. Review on environmental effects and applications of biochar(In Chinese).Environmental Chemistry,2011,30(8):1411—1421
[5] Liang B,Lehmann J,Solomon D,et al. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal,2006,70(5):1719—1730
[6] Petit C,Kante K,Bandosz T J. The role of sulfurcontaining groups in ammonia retention on activated carbons. Carbon,2010,48(3):654—667
[7] Yuan J H,Xu R K,Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology,2011,102(3):3488—3497
[8] 王萌萌,周启星. 生物炭的土壤环境效应及其机制研究. 环境化学,2013,32(5):768—780 Wang M M,Zhou Q X. Environmental effects and their mechanisms of biochar applied to soils(In Chinese).Environmental Chemistry,2013,32(5):768—780
[9] 张晗芝,黄云,刘钢,等. 生物炭对玉米苗期生长、养分吸收及土壤化学性状的影响. 生态环境学报,2010,19(11):2713—2717 Zhang H Z,Huang Y,Liu G,et al. Effect of biochar on corn growth,nutrient uptake and soil chemical properties in seeding stage(In Chinese). Ecology and Environmental Sciences,2010,19(11):2713—2717
[10] Yang Y N,Sheng G Y. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environmental Science amp; Technology,2003,37(16):3635—3639
[11] 楚颖超. 不同温度裂解椰子生物炭对重金属吸附的研究. 海口:海南大学,2015 Chu Y C. Adsorption of heavy metal on different temperature derived biochar from coconut(In Chinese). Haikou:Hainan University,2015
[12] 杨晶晶. 竹屑生物炭吸附典型芳香性有机物的机制及规律. 杭州:浙江大学,2016 Yang J J. Correlation and mechanisms of typical aromatic compounds adsorption on bamboo biochars(In Chinese). Hangzhou:Zhejiang University,2016
[13] 张晗,林宁,黄仁龙,等. 不同生物质制备的生物炭对菲的吸附特性研究. 环境工程,2016,34(10):166—171 Zhang H,Lin N,Huang R L,et al. Sorption of phenanthrene on biochars produced from different biomass materials(In Chinese). Environmental Engineering,2016,34(10):166—171
[14] 陈宝梁,周丹丹,朱利中,等. 生物碳质吸附剂对水中有机污染物的吸附作用及机理. 中国科学,2008,38(6):530—537 Chen B L,Zhou D D,Zhu L Z,et al. The adsorption and mechanisms of biomass carbon adsorbent on organic pollutions in water(In Chinese). China Science,2008,38(6):530—537
[15] 孟冠华,李爱民,张全兴. 活性炭的表面含氧官能团及其对吸附影响的研究进展. 离子交换与吸附,2007,23(1):88—94 Meng G H,Li A M,Zhang Q X. The research on the surface oxygen functional groups of active carbon and its influence on the adsorption(In Chinese). Ion Exchange and Adsorption,2007,23(1):88—94
[16] Cheng C H,Lehmann J,Thies J E,et al. Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry,2006,37(11):1477—1488
[17] Chen B L,Johnson E J,Chefetz B,et al. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials:Role of polarity and accessibility. Environmental Science amp; Technology,2005,39(16):6138—6146
[18] 吴晴雯,孟梁,张志豪,等. 芦苇秸秆生物炭对水中菲和1,1-二氯乙烯的吸附特性. 环境科学,2016,37(2):680—688 Wu Q W,Meng L,Zhang Z H,et al. Sorption characteristics of phenanthrene and 1,1-dichloroethene onto reed straw biochar in aquatic solutions(In Chinese). Environmental Science,2016,37(2):680—688
[19] Wu W,Yang M,Feng Q,et al. Chemical characterization of rice straw-derived biochar for soil amendment.Biomass amp; Bioenergy,2012,47:268—276
[20] Xie M X,Chen W,Xu Z Y,et al. Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions.Environmental Pollution,2014,186:187—194
[21] Peng P,Lang Y H,Wang X M. Adsorption behavior and mechanism of pentachlorophenol on reed biochars:Ph effect,pyrolysis temperature,hydrochloric acid treatment and isotherms. Ecological Engineering,2016,90:225—233
[22] Sohi S P. Carbon storage with benefits. Science,2012,338(6110):1034—1035
[23] Kuzyakov Y,Subbotina I,Chen H Q,et al. Black carbon decomposition and incorporation into soil microbial biomass estimated by14C labeling. Soil Biologyamp; Biochemistry,2009,41(2):210—219
[24] 余向阳,王冬兰,母昌立,等. 生物质炭对敌草隆在土壤中的慢吸附及其对解吸行为的影响. 江苏农业学报,2011,27(5):1011—1015 Yu X Y,Wang D L,Mu C L,et al. Role of biochar in slow sorption and desorption of diuron in soil(In Chinese). Jiangsu Journal of Agricultural Sciences,2011,27(5):1011—1015
[25] 余向阳,应光国,刘贤进,等. 土壤中黑碳对农药敌草隆的吸附-解吸迟滞行为研究. 土壤学报,2007,44(4):650—655 Yu X Y,Ying G G,Liu X J,et al. Hysteresis effect of charcoal on sorption and desorption of diuron by soil(In Chinese). Acta Pedologic Sinica,2007,44(4):650—655
[26] Jones D L,Edwards-Jones G,Murphy D V. Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biology amp; Biochemistry,2011,43(4):804—813
[27] Cao X,Ma L,Liang Y,et al. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environmental Science amp;Technology,2011,45(11):4884—4889
[28] 宋洋,王芳,杨兴伦,等. 生物质炭对土壤中氯苯类物质生物有效性的影响及评价方法. 环境科学,2012,33(1):169—174 Song Y,Wang F,Yang X L,et al. Inluence and assessment of biochar on the bioavailability of chlorobenzenes in soil(In Chinese). Environmental Science,2012,33(1):169—174
[29] Yu X Y,Ying G G,Kookana R S. Reduced plant uptake of pesticides with biochar additions to soil.Chemosphere,2009,76(5):665—671
[30] Hale S E,Hanley K,Lehmann J,et al. Effects of chemical,biological,and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar. Environmental Science amp; Technology,2011,45(24):10445—10453
[31] Liu P,Liu W J,Jiang H,et al. Modification of biochar derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology,2012,121:235—240
[32] Taha S M,Amer M E,Elmarsafy A E,et al.Adsorption of 15 different pesticides on untreated and phosphoric acid treated biochar and charcoal from water.Journal of Environmental Chemical Engineering,2014,2(4):2013—2025
[33] Cao X,Ma L,Gao B,et al. Dairy-manure derived biochar effectively sorbs lead and atrazine.Environmental Science amp; Technology,2009,43(9):3285—3291
[34] Kong H,He J,Gao Y,et al. Cosorption of phenanthrene and mercury(ii)from aqueous solution by soybean stalk-based biochar. Journal of Agricultural and Food Chemistry,2011,59(22):12116—12123
[35] Khan S,Wang N,Reid B J,et al. Reduced bioaccumulation of PAHs by Lactuca satuva L. grown in contaminated soil amended with sewage sludge and sewage sludge derived biochar. Environmental Pollution,2013,175:64—68
[36] Chiou C T,Cheng J,Hung W N,et al. Resolution of adsorption and partition components of organic compounds on black carbons. Environmental Science amp;Technology,2015,49(15):9116—9123
[37] 李洋,宋洋,王芳,等. 小麦秸秆生物炭对高氯代苯的吸附过程与机制研究. 土壤学报,2015,52(5):1096—1105 Li Y,Song Y,Wang F,et al. Effect of wheat straw biochar on high chlorinated benzene sorption process and mechanism(In Chinese). Acta Pedologica Sinica,2015,52(5):1096—1105
[38] 王菲,孙红文. 生物炭对极性与非极性有机污染物的吸附机理. 环境化学,2016,35(06):1134—1141 Wang F,Sun H W. Sorption mechanisms of polar and apolar organic contaminants onto biochars(In Chinese). Environmental Chemistry,2016,35(6):1134—1141
[39] Braida W J,Pignatello J J,Lu Y F,et al. Sorption hysteresis of benzene in charcoal particles. Environmental Science amp; Technology,2003,37(2):409—417
[40] Chen B L,Zhou D D,Zhu L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science amp;Technology,2008,42(14):5137—5143
[41] Zhang H H,Lin K D,Wang H L,et al. Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Environmental Pollution,2010,158(9):2821—2825
[42] Kasozi G N,Zimmerman A R,Nkedikizza P,et al. Catechol and humic acid sorption onto a range of laboratory-produced black carbons(biochars).Environmental Science amp; Technology,2010,44(16):6189—6195
[43] Chen B L,Chen Z M. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere,2009,76(1):127—133
[44] Zheng W,Guo M X,Chow T,et al. Sorption properties of greenwaste biochar for two triazine pesticides. Journal of Hazardous Materials,2010,181(1/3):121—126[45] 陈翠苹. 水中亚硝胺类污染物的吸附去除与作用机制.杭州:浙江大学,2016 Chen C P. Removal of nitrosamines from aqueous solution by sorption process(In Chinese). Hangzhou:Zhejiang University,2016
[46] Chiou C T,Freed V H,Schmedding D W,et al. Partition-coefficient and bioaccumulation of selected organic chemicals. Environmental Science amp;Technology,1977,11(5):475—478
[47] Chiou C T,Lee J F,Boyd S A. The surface area of soil organic matter. Environmental Science amp; Technology,1990,24(8):1164—1166
[48] Chiou C T,Peters L J,Freed V H. Physical concept of soil-water equilibria for nonionic organic compounds.Science,1979,206(4420):831—832
[49] Chiou C T,Rutherford D W,Manes M. Sorption of N2and EGME vapors on some soils,clays,and mineral oxides and determination of sample surface-areas by use of sorption data. Environmental Science amp; Technology,1993,27(8):1587—1594
[50] Fu Q L,He J Z,Blaney L,et al. Sorption of roxarsone onto soils with different physicochemical properties.Chemosphere,2016,159:103—112
[51] Huang W H,Chen B L. Interaction mechanisms of organic contaminants with burned straw ash charcoal.Journal of Environmental Sciences,2010,22(10):1586—1594
[52] Chun Y,Sheng G Y,Chiou C T,et al. Compositions and sorptive properties of crop residue-derived chars.Environmental Science amp; Technology,2004,38(17):4649—4655
[53] 陈宝梁,陈再明,陈文远,等. 有机污染物与生物炭的相互作用:吸附模型、机理和热力学. 第六届全国环境化学大会暨环境科学仪器与分析仪器展览会摘要集. 上海,2011 Chen B L,Chen Z M,Chen W Y,et al. Interaction of biochar and organic pollutants:Adsorption model,the mechanism and thermodynamics(In Chinese).Proceedings of the sixth national conference on environmental chemistry and environmental science instrument and analysis instrument exhibition.Shanghai,2011
[54] Zhu D Q,Kwon S,Pignatello J J. Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions.Environmental Science amp; Technology,2005,39(11):3990—3998
[55] Carter M C,Kilduff J E,Weber W J. Site energy distribution analysis of preloaded adsorbents. Environmental Science amp; Technology,1995,29(7):1773—1780
[56] Rivera-Utrilla J,Bautista-Toledo I,Feffo-Garcia M A,et al. Bioadsorption of Pb(II),Cd(II),and Cr(VI)on activated carbon from aqueous solutions.Carbon,2003,41(2):323—330
[57] Teixido M,Pignatello J J,Beltran J L,et al.Speciation of the ionizable antibiotic sulfamethazine on black carbon(biochar). Environmental Science amp;Technology,2011,45(23):10020—10027
[58] Lou L P,Luo L,Wang L N,et al. The influence of acid demineralization on surface characteristics of black carbon and its sorption for pentachlorophenol. Journal of Colloid and Interface Science,2011,361(1):226—231
[59] Zhang P,Sun H,Yu L,et al. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manurederived biochars:Impact of structural properties of biocharse. Journal of Hazardous Materials,2013,244:217—224
[60] Coughlin R W,Ezra F S,Tan R N. Influence of chemisorbed oxygen in adsorption onto carbon from aqueous solution. Journal of Colloid and Interface Science,1968,28(3/4):386—396
[61] Diaz-Flores P E,Leyva-Ramos R,Guerrero-Coronado R M,et al. Adsorption of pentachlorophenol from aqueous solution onto activated carbon fiber. Industrialamp; Engineering Chemistry Research,2006,45(1):330—336
[62] Storck S,Bretinger H,Maier W F. Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Applied Catalysis A:General,1998,174(1/2):137—146
[63] 李俊国,孙红文. 芘在土壤中的长期吸附和解吸行为.环境科学,2006,27(1):165—170 Li J G,Sun H W. The long-term adsorption and desorption behaviors of pyrene in soil(In Chinese).Environmental Science,2006,27(1):165—170
[64] 李晓军,李培军,蔺昕. 土壤中难降解有机污染物锁定机理研究进展. 应用生态学报,2007,18(7):1624—1630 Li X J,Li P J,Lin X. Research advances in sequestration mechanisms of hardly biodegradable organic contaminants in soil(In Chinese). Chinese Journal of Applied Ecology,2007,18(7):1624—1630
[65] 王震宇,于晓冬,许颖,等. 土壤微孔对有机物吸附/解吸的影响及其表征. 生态学报,2009,29(4):2087—2096 Wang Z Y,Yu X D,Xu Y,et al. Characterization of soil/ sediment micropores and their impacts on the sorption/ desorption behavior of organic pollutants(In Chinese). Acta Ecologica Sinica,2009,29(4):2087—2096
[66] 李莉,苗明升,丁俊男,等. 土壤中锁定残留芘在体外消化系统中的生物可给性. 生态毒理学报,2009,4(5):634—640 Li L,Miao M S,Ding J N,et al. Oral bioaccessibility of bound residue of pyrene in contamination soils determined by an in vitro gastrointestinal model(In Chinese). Asian Journal of Ecotoxicology,2009,4(5):634—640
[67] Nguyen T H,Cho H H,Poster D L,et al. Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char. Environmental Science amp; Technology,2007,41(4):1212—1217
[68] 张默,贾明云,卞永荣,等. 不同温度玉米秸秆生物炭对萘的吸附动力学特征与机理. 土壤学报,2015,52(5):1106—1115 Zhang M,Jia M Y,Bian Y R,et al. Sorption kinetics and mechanism of naphthalene on corn-stalk-derived biochar with different pyrolysis temperature(In Chinese). Acta Pedologica Sinica,2015,52(5):1106—1115
[69] Cheng H,Hu E,Hu Y. Impact of mineral micropores on transport and fate of organic contaminants:A review.Journal of Contaminant Hydrology,2012,129:80—90
[70] Hu E,Cheng H. Impact of surface chemistry on microwave-induced degradation of atrazine in mineral micropores. Environmental Science amp; Technology,2013,47(1):533—541
[71] Muller E A,Gubbins K E. Molecular simulation study of hydrophilic and hydrophobic behavior of activated carbon surfaces. Carbon,1998,36(10):1433—1438
[72] Zhang F,Li Y,Zhang G,et al. The importance of nano-porosity in the stalk-derived biochar to the sorption of 17β-estradiol and retention of it in the greenhouse soil. Environmental Science and Pollution Research,2017,24(10):9575—9584
[73] Sander M,Lu Y F,Pignatello J J. Conditioningannealing studies of natural organic matter solids linking irreversible sorption to irreversible structural expansion.Environmental Science amp; Technology,2006,40(1):170—178
[74] Sander M,Pignatello J J. An isotope exchange technique to assess mechanisms of sorption hysteresis applied to naphthalene in kerogenous organic matter.Environmental Science amp; Technology,2005,39(19):7476—7484
[75] Weber W J Jr,McClinley P M,Katz L E. A distributed reactivity model for sorption by soils and sediments.1.Conceptual basis and equllibrium assessments.Environmental Science amp; Technology,1992,26(10):1955—1962
[76] Zhu L Z,Chen B L. Sorption behavior of p-nitrophenol on the interface between anion-cation organobentonite and water. Environmental Science amp; Technology,2000,34(14):2997—3002
[77] 颜钰,王子莹,金洁,等. 不同生物质来源和热解温度条件下制备的生物炭对菲的吸附行为. 农业环境科学学报,2014,33(9):1810—1816 Yan Y,Wang Z Y,Jin J,et al. Phenanthrene adsorption on biochars produced from different biomass materials at two temperatures(In Chinese). Journal of Agriculture Environment Science,2014,33(9):1810—1816
[78] 张利波,彭金辉,夏洪应,等. 微波加热制备烟杆基高比面积活性炭的研究. 武汉理工大学学报,2008,30(12):76—79 Zhang L B,Peng J H,Xia H Y,et al. Research of preparation of high specific surface area activated carbon from tobacco stem by microwave heating(In Chinese). Journal of Wuhan University of Technology,2008,30(12):76—79
[79] Yang K,Peng J,Srinivasakannan C,et al. Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresource Technology,2010,101(15):6163—6169
[80] 王怀臣,冯雷雨,陈银广. 废物资源化制备生物质炭及其应用的研究进展. 化工进展,2012,31(4):907—914 Wang H C,Feng L Y,Chen Y G. Advances in biochar production from wastes and its applications(In Chinese). Chemical Industry and Engineering Progress,2012,31(4):907—914
[81] Lei O,Zhang R. Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. Journal of Soils and Sediments,2013,13(9):1561—1572
[82] 陈静文. 两类生物炭的热稳定性和化学稳定性比较. 昆明:昆明理工大学,2014 Chen J W. Thermal stability and chemical stability of two types of biochar(In Chinese). Kunming:Kunming University of Science and Technology,2014
[83] Crombie K,Masek O,Sohi S P,et al. The effect of pyrolysis conditions on biochar stability as determined by three methods. Global Change Biology Bioenergy,2013,5(2):122—131
[84] Beesley L,Moreno-Jimenez E,Gomez-Eyles J L,et al.A review of biochars' potential role in the remediation,revegetation and restoration of contaminated soils.Environmental Pollution,2011,159(12):3269—3282
[85] Mohan D,Pittman C U.,Steele P H. Pyrolysis of wood/biomass for bio-oil:A critical review. Energy amp; Fuels,2006,20(3):848—889
[86] Mohanty P,Nanda S,Pant K K,et al. Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw,timothy grass and pinewood:Effects of heating rate. Journal of Analytical and Applied Pyrolysis,2013,104:485—493
[87] Zhang M,Gao B,Varnoosfaderani S,et al.Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology,2013,130:457—462
[88] 李保强,刘钧,李瑞阳,等. 生物质炭的制备及其在能源与环境领域中的应用. 生物质化学工程,2012,46(1):34—38 Li B Q,Liu J,Li R Y,et al. The preparation of biomass carbon and the application in the field of energy and the environment(In Chinese). Biomass Chemical Engineering,2012,46(1):34—38
[89] Keiluweit M,Nico P S,Johnson M G,et al.Dynamic molecular structure of plant biomass-derived black carbon(biochar). Environmental Science amp;Technology,2010,44(4):1247—1253
[90] 冯琪波. 稻田土壤水稻秸秆生物质炭稳定性研究. 杭州:浙江大学,2013 Feng Q B. Study on the stability of rice straw biochar on paddy soil(In Chinese). Hangzhou:Zhejiang University,2013
[91] 周丹丹. 生物碳质对有机污染物的吸附作用及机理调控. 杭州:浙江大学,2008 Zhou D D. The adsorption and mechanism of biomass carbon on organic pollutions(In Chinese).Hangzhou:Zhejiang University,2008
[92] Uchimiya M,Chang S,Klasson K T. Screening biochars for heavy metal retention in soil:Role of oxygen functional groups. Journal of Hazardous Materials,2011,190(1/3):432—441
[93] 唐伟. 生物质炭老化过程表面性质的变化及其对菲吸附性能的影响机制. 南京:南京农业大学,2014 Tang W. Changes in biochar surface structure during aging and influences on phenanthrene adsorption(In Chinese). Nanjing:Nanjing Agricultural University,2014
[94] Cederlund H,Börjesson E,Lundberg D,et al.Adsorption of pesticides with different chemical properties to a wood biochar treated with heat and iron.Water,Air,amp; Soil Pollution,2016,227,DOI:10.1007/s 11270-016-2894-z
[95] Hale S E,Arp H P H,Kupryianchyk D,et al. A synthesis of parameters related to the binding of neutral organic compounds to charcoal. Chemosphere,2016,144:65—74
[96] Hao R,Wang P C,Wu Y P,et al. Impacts of water level fluctuations on the physicochemical properties of black carbon and its phenanthrene adsorptiondesorption behaviors. Ecological Engineering,2017,100:130—137
[97] Zhang X K,He L Z,Mao X L,et al. Effect of different aging processes on the adsorption and desorption of diethyl phthalate to soil amended with biochars. Acta Scientiae Circumstantiae,2015,35(12):4012—4020
[98] Bornemann L C,Kookana R S,Welp G. Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood. Chemosphere,2007,67(5):1033—1042
[99] Quilliam R S,Rangecroft S,Emmett B A,et al.Is biochar a source or sink for polycyclic aromatic hydrocarbon(PAHs)compounds in agricultural soils?Global Change Biology Bioenergy,2013,5(2):96—103
[100] Zhurinsh A,Zandersons J,Dobele G. Slow pyrolysis studies for utilization of impregnated waste timber materials. Journal of Analytical and Applied Pyrolysis,2005,74(1/2):439—444
[101] 李增波,王聪颖,蒋新,等. 生物质炭中多环芳烃的潜在环境风险研究进展. 土壤学报,2016,53(6):1357—1370 Li Z B,Wang C Y,Jiang X,et al. Progress of the research on potential environmental risk of polycyclic aromatic hydrocarbons(PAHs)in biochar(In Chinese). Acta Pedologica Sinica,2016,53(6):1357—1370
[102] Beesley L,Moreno-Jimenez E,Gomez-Eyles J L.Effects of biochar and greenwaste compost amendments on mobility,bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution,2010,158(6):2282—2287
[103] Brussaard L,Behan-Pelletier V M,Bignell D E,et al. Biodiversity and ecosystem functioning in soil.Ambio,1997,26(8):563—570
[104] Song Y,Li Y,Zhang W,et al. Novel biochar-plant tandem approach for remediating hexachlorobenzene contaminated soils:Proof-of-concept and new insight into the rhizosphere. Journal of Agricultural and Food Chemistry,2016,64(27):5464—5471
[105] Van Zwieten L,Kimber S,Morris S,et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil,2010,327(1/2):235—246
(责任编辑:卢 萍)
A Review of Researches on Biochar Adsorbing Organic Contaminants and Its Mechanism
LI Xiaona1,2SONG Yang1JIA Mingyun1WANG Fang1BIAN Yongrong1JIANG Xin1†
(1 Key Laboratory of Soil Environment and Pollution Remediation,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China)
(2 University of the Chinese Academy of Sciences,Beijing 100049,China)
Biochar is a kind of porous and carbon-rich material prepared out of waste biomass through pyrolyzation anaerobically or aerobically. Thanks to its high adsorption capacity,handy resources,low preparation cost and environment-friendliness,biochar has aroused more and more attention among the academic circles. Knowledge about mechanism and rules of biochar adsorbing organic contaminants is crucial to proper evaluation of its environmental behaviors and application value. This article reviewed with emphasis reports available on mechanisms of biochar adsorbing organic pollutants,such as partition,surface adsorption,pore interception,etc. Generally speaking,biochar prepared at low temperature adsorbs nonpolar organics mainly via partitioning. This non-competitive adsorption mechanism can be used to explain the process of biochar adsorbing pollutant high in concentration. Surface adsorption is a kind of competitive sorption mechanism. Organic contaminants caught on the effective sites on the surface of biochar are adsorbed via electrostatic interaction or hydrogen bonding,ionic bonding,π-electron donor-acceptor(π-π EDA),etc. Pore interception is another microscopic mechanism of biochar adsorbing organic pollutants. Partitioning and adsorption of organic pollutants inside the pores is also an important portion of the biochar adsorption capacity. Both polar and/or non-polar organic contaminants can be sorbed on biochar via pore interception. In fact,the mechanisms of biochar adsorbing organic compounds are various with one dominated and additional other mechanisms also occurred. In addition,this paper analyzed and summarized influencing factors of mechanisms of biochar adsorbing organic contaminants. Physico-chemical properties of biochar including high specific area,well-developed porosity,rich polar functional groups and stable aromatic structure are essential to determine the application value of this super-sorbent. Only biochar with properties matchable to organic contaminants in polarity,aromaticity,molecular size can be used to bring their adsorption capacity into full play. Sorption environment such as pH,medium and co-existing ions is also an important factor affecting adsorption effect of biochar. All account for the complex process of biochar adsorbing organic compounds. However,the researches reported in the literature are found to have some problems. For example,some of them remained on the stage of laboratory and little is reported in the literature on using experimental methods to probe mechanisms of biochar adsorbing organic compounds. At the end,the article brought forth solutions to the existing problems and described prospects of the application of biochar in remediation of organic polluted soils in future.
Biochar;Organic contaminants;Sorptioncharacteristics;Sorption mechanisms
X53
A
10.11766/trxb201704060004
* 国家重点基础研究发展计划(973计划)项目(2014CB441105)、国家自然科学基金项目(41671236)和中国科学院“一三五”计划与领域前沿项目(ISSASIP1614)共同资助 Supported by the National Basic Research Program of China(973 Program)(No.2014CB441105),the National Natural Science Foundation of China(No.41671236)and the“135”Plan and Frontiers Program of Chinese Academy of Sciences(No.ISSASIP1614)
† 通讯作者 Corresponding author,E-mail:jiangxin@issas.ac.cn
李晓娜(1993—),女,博士研究生,主要从事环境化学与污染控制研究。E-mail:xnli@issas.ac.cn
2017-04-06;
2017-06-27;优先数字出版日期(www.cnki.net):2017-08-21