APP下载

北极水域船舶航行环境风险影响因素识别

2017-12-06付姗姗张笛张明阳严新平

哈尔滨工程大学学报 2017年11期
关键词:海冰水域北极

付姗姗,张笛,张明阳,严新平

(1.武汉理工大学 智能交通系统研究中心,湖北 武汉 430063; 2.国家水运安全工程技术研究中心,湖北 武汉 430063; 3.上海海事大学 海洋科学与工程学院,上海 201306)

北极水域船舶航行环境风险影响因素识别

付姗姗1,2,3,张笛1,2,张明阳1,2,严新平1,2

(1.武汉理工大学 智能交通系统研究中心,湖北 武汉 430063; 2.国家水运安全工程技术研究中心,湖北 武汉 430063; 3.上海海事大学 海洋科学与工程学院,上海 201306)

针对北极水域船舶航行所面临的复杂环境风险的识别问题,本文提出了北极水域船舶航行环境风险因素的层次分析模型。针对风险因素识别中面临的不确定性问题,结合层次分析法、模糊集合(三角模糊数)和蒙特卡洛仿真,提出了基于蒙特卡洛仿真的模糊层次分析法,并运用该方法识别北极水域船舶航行重要环境风险因素。从数据和模型两方面对环境风险因素识别研究的合理性进行了分析与验证,研究结果表明:风、能见度、海冰密集度和气温是影响北极水域船舶航行安全的重要环境风险因素。

北极水域; 通航环境; 风险影响因素; 风险识别; 层次分析法; 模糊集合; 蒙特卡洛仿真

全球气候变化、北极海冰大量融化,使得北极水域船舶商业化运营成为了可能。2016年,我国“永盛轮”、“夏之远”、“天禧轮”等多艘船舶穿越北极东北航道顺利抵达了欧洲港口。然而北极水域作为一个船舶航行高风险、环境脆弱敏感的冰区水域,船舶航行面临复杂海冰、地磁干扰、大风、低能见度等复杂环境条件的考验。为了提升极地水域船舶航行安全水平,开展风险因素识别研究十分必要。

北极水域船舶航行安全研究受到了俄罗斯[1]、加拿大[2-3]、挪威[4]等北极周边国家学者的广泛关注。加拿大交通部门构建了北极冰域航运系统[2];KHAN等提出了北极航运系统风险评价框架[3];KUM等分析了北极水域船舶碰撞、搁浅事故致因[4];MARKEN等分析了东北航道船舶延误的风险[5];极地规则[6]也对不同海冰下各种冰级船舶的航行速度进行了分析。吕宝刚等分析了北极东北航道的船舶通航环境特征[7-8];FU等建立了北极水域船舶冰困风险的多因素耦合模型[9]。

这些研究主要以通航环境和事故风险评价研究为主,运用北极水域船舶通航环境影响因素,构建了碰撞、搁浅等北极水域典型事故的风险评价模型,但对于风险因素的辨识缺乏系统性研究,冰流、磁暴等部分环境风险因素没有在模型中予以考虑。鉴于此,本文针对北极水域船舶航行所涉及的环境因素进行系统性的分析和识别。

1 环境风险因素的层次模型

北极水域是一个涉及复杂气象、海况和冰况的动态环境。本研究通过文献分析和专家调研,识别船舶在北极水域航行面临风、能见度、地磁、气温、磁暴、海冰密集度、冰流等环境风险影响因素[6, 9-11]。针对北极水域船舶航行可能面临的这些环境风险因素,运用层次分析法建立北极水域船舶航行环境风险因素的层次模型,如图1所示。

图1 北极水域船舶航行环境风险因素的层次模型Fig.1 A hierarchical model for environmental risk influencing factors of Arctic marine transportation system

该模型以识别北极水域船舶航行环境风险因素为目标,将其划分为气象环境和航道条件2个子系统作为指标层,气象环境子系统被进一步划分为风、能见度、地磁、低温、磁暴5个底层分指标,航道条件子系统被划分为海况、冰况2个分指标层。其中,海况分指标又被进一步划分为海水温度和浪2个底层分指标,冰况分指标层又被进一步划分为海冰密集度、海冰厚度和冰流3个底层分指标。

2 风险因素识别方法

针对北极水域船舶航行环境风险因素中面临的不确定性问题,本研究在图1所构建的北极水域船舶航行环境风险因素的层次分析模型基础上,提出了一种基于蒙特卡洛仿真的模糊层次分析法(Monte Carlo-based fuzzy-AHP, MC-FAHP)。通过北极水域船舶航行环境风险影响因素层次模型的因素权重计算,以识别影响北极水域船舶航行安全的重要环境风险因素。具体包含以下4个研究步骤:

1)模糊判断矩阵构建。建立专家判断术语与三角模糊数之间的映射关系,搜集专家对于层次模型各层级指标的判断意见,针对每个专家意见分别构建成对比较的模糊判断矩阵。

2)权向量的概率分布计算。根据模糊层次分析法计算规则,计算模糊判断矩阵的权向量,结合可能性分析方法,将模糊判断矩阵中涉及的权向量从模糊隶属度函数转化为概率分布形式。

3)专家权重计算。针对参与问卷调研专家的职位、工作经验、教育背景等方面因素,构建专家权重评价指标体系,评价问卷调研专家的权重系数,并根据参与问卷调研专家的权重系数,运用加权平均方法,对权向量的概率分布函数进行数据融合。

4)合成权重计算。根据专家意见融合后各指标的权向量,计算底层指标对目标层(北极水域船舶航行环境风险因素识别)合成权重的概率分布函数,并根据概率分布函数众数的大小对其进行排序,识别关键风险因素(指标)。

2.1模糊判断矩阵的构建

根据层次分析法常用的九级标度法[12],结合模糊层次分析法三角模糊集合构建方式[13],定义成对比较的九标度模糊判断术语来搜集专家意见,如表1所示。

表1 判断术语的模糊集合

(1)

2.2权向量的概率分布计算

i=1,2,…,n

(2)

i=1,2,…,n

(3)

α(Ui-Mi)+Mi),i=1,2,…,n

(4)

在蒙特卡洛仿真的过程中,通过生成符合一定概率分布的随机变量,用统计方法估计模型的数字特征,从而得到实际问题的数值解。由于专家判断的输入数据存在一定的随机不确定性,拟采用三角形分布函数来对这种不确定性进行数值仿真。三角形分布是以下限为a,众数为b,上限为c的连续概率分布:

(5)

按照下式将模糊判断矩阵指标权重转化为三角形分布函数:

(6)

i=1,2,…,n

(7)

然后通过随机生成1 000组样本数据[15]来仿真三角形分布函数的随机性,来估算各层级权向量的众数和置信区间。

2.3专家权重计算

拟根据调研人员职位(e1)、航运系统工作经验(e2)、北极航运工作经验(e3)、教育背景(e4)等方面因素构建人员工作经验评价指标体系,如表2所示,对调研专家的资历进行综合评价,从而获得各位专家在模型中的权重。

假设有m位专家参与调研工作,各位专家综合得分S(k)、权重λ(k)按照下式进行计算:

(8)

(9)

2.4合成权重计算

根据各位专家的权重,按照加权平均的方法对权向量的三角形分布函数进行数据融合:

i=1,2,…,n

(10)

表2决策人员权重评价指标体系

Table3Criteriafordeterminingthedecisionmakers′weights

指标分类等级人员职位e1科学研究5企业高级管理人员4企业中级管理人员3科员2职员1航运系统工作经验e2>20a516~20a411~15a36~10a21~5a1北极航运工作经验e3>15a511~15a46~10a33~5a21~2a1教育背景e4博士5硕士4学士3专科2高中/中专1

将目标层下的指标层定义为第1层,各分指标层分别表示为第2~(n-1)层,对各层级的权重进行合成,计算各层级相对于目标层合成权重的分布函数:

i=1,2,…,n

(11)

3 环境风险因素的识别研究

3.1模糊判断矩阵构建

根据2.1节所述的模糊判断术语,通过问卷调研搜集到6名专家对于北极水域航行船舶环境风险因素的判断意见。表3为各位专家对于气象环境分指标(C11~C15)的判断意见。

将每位专家对于各层级指标的两两比较判断意见组成各层级模糊判断矩阵。例如A专家对于环境风险因素的判断矩阵可以表示为

3.2权向量的概率分布计算

按照式(6)、(7)将三角模糊向量转化为三角形分布函数:

f(xC11|0.145 9,0.219 5,0.307 6)

3.3专家权重计算

按照式(8)、(9)计算得到6位专家(A~F)的权重λk分别为(0.238 8, 0.090 9, 0.155 8, 0.194 8, 0.142 9, 0.181 8)T。按照式(10)对6位专家数据进行融合,得到环境风险因素C11指标的概率密度函数和累积分布函数,如图2所示。

3.4合成权重计算

由表4可见,风、能见度和海冰密集度是影响北极水域船舶航行安全的首要因素,它们众数的权重(在95%置信度情况下)占总权重的13%以上;气温、海冰厚度对北极船舶航行安全的影响次之,它们众数的权重占总权重的9%~10%;冰流、地磁和磁暴是影响北极船舶航行安全的一般因素,它们众数的权重占总权重的6%~7%;海水温度和浪对于北极水域船舶航行安全的影响较小,它们众数的权重约在5%以下。

3.5分析与验证

从数据和模型这2个方面,对本研究北极水域船舶航行环境风险识别研究的有效性进行分析与验证。

3.5.1 专家判断数据

通过将模糊矩阵中的三角模糊数进行去模糊化计算转换成常规矩阵,可以应用层次分析法的一致性检验方法,对每位专家数据的进行检验。

表3 气象风险因素两两比较判断意见

图2 环境风险因素C11指标综合的概率密度函数和累积分布函数Fig.2 The probability density function and cumulative density function for C11 indexes in environmental risk factors

表4合成权重的分布区间

Table4IntervaloftheoverallweightsfortheRIFsinthebottomlevel

底层指标95%置信区间[f-Ci,fCi]众数百分比/%风C11[0.1279,0.1585]0.146914.21能见度C12[0.2367,0.2785]0.260825.23地磁C13[0.0511,0.0696]0.06296.09气温C14[0.0849,0.1096]0.10309.97磁暴C15[0.0552,0.0731]0.06416.20海水温度C21-1[0.0307,0.0382]0.03283.17浪C21-2[0.0488,0.0589]0.05315.14海冰密集度C22-1[0.1287,0.1504]0.142213.76海冰厚度C22-2[0.0881,0.1063]0.09489.17冰流C22-3[0.0692,0.0819]0.07297.05

类似地,计算得出每位专家判断矩阵均能通过一致性检验。

3.5.2 模型效度验证

1)研究方法对比验证

Vdefuzzification=

从模糊层次分析法方法的去模糊化数值来看,模糊层次分析法方法的计算结果与MC-FAHP的结果呈现出高度的一致性,验证了基于蒙特卡洛仿真的模糊层次分析法的有效性。

2)研究结果验证

从国际相关研究结果来看:风和能见度在国际上一直被认为是影响船舶航行安全的重要环境风险因素[16],海冰密集度作为极地水域典型环境风险因素也在IMO极地规则[6]中得到了重点分析。本研究基于蒙特卡洛仿真的模糊层次分析法(MC-FAHP)计算得出的结果与国际研究结论相一致,验证了研究结论的合理性。

表5合成权重的权向量和去模糊化数值

Table5Theaggregatedtriangularfuzzysyntheticextentandassociateddefuzzificationvalues

底层指标权向量(S~i)去模糊化数值风C11(0.0816,0.1385,0.2156)0.1452能见度C12(0.1703,0.2550,0.3541)0.2598地磁C13(0.0292,0.0555,0.1000)0.0616气温C14(0.0528,0.0931,0.1517)0.0922磁暴C15(0.0353,0.0593,0.1005)0.0650海水温度C21-1(0.0593,0.0828,0.1241)0.0364浪C21-2(0.0319,0.054,0.0858)0.0560海冰密集度C22-1(0.0887,0.1421,0.2077)0.1462海冰厚度C22-2(0.0605,0.0970,0.2077)0.1017冰流C22-3(0.0485,0.0756,0.1125)0.0789

4 结论

1)本研究提出了一种基于蒙特卡洛仿真的模型层次分析法(MC-FAHP),识别出风、能见度、海冰密集度和气温是影响北极水域船舶航行安全的重要环境风险因素,并从数据和模型两方面对本研究北极水域船舶航行环境风险因素识别研究的合理性进行了分析与验证。

2)本研究识别出来的环境风险影响因素可以为北极水域船舶事故风险建模研究中的模型参数的选取提供支撑,也可运用于北极水域船舶航行风险评价问题的权重计算。

[1] VALZEZ B O A, GOER A F, KUZMIN V, et al. Risk management model of winter navigation operations [J]. Marine pollution bulletin, 2016(108): 242-262.

[2] Canada Transport. User assistance package for the implementation of Canada’s Arctic ice regime shipping system (ARISS) [Z]. Canada Transport, 1998.

[3] KHAN F, YANG M, VETCH B, et al. Transportation risk analysis framework for Arctic Waters [C]// Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, CA,USA 2014.

[4] KUM S, SAHIN B. A root cause analysis for Arctic Marine accidents from 1993 to 2011 [J]. Safety science, 2015, 74: 206-220.

[5] MARKEN V B, EHLERS S, KHAN F. Delay risk analysis of ship sailing the northern sea route [J]. Ship technology research, 2015, 62(1): 26-35.

[6] Maritime Safety Committee (MSC). International code for ships operating in polar waters (Polar Code) [S]. London: MSC, 2014.

[7] 吕宝刚. 北极航行的环境因素及冰区航行安全措施研究[D]. 大连: 大连海事大学, 2012.

LYU Baogang. Study on the environmental factors of Arctic navigation and the safety measures for navigation in ice area[D]. Dalian: Dalian Maritime University, 2012.

[8] 李振福, 闫力, 徐梦俏, 等. 北极航线通航环境评价 [J]. 计算机工程与应用技术, 2013, 49(1): 249-253.

LI Zhenfu, YAN Li, XU Mengqiao, et al. Evaluation of Arctic route’s navigation environment[J]. Computer engineering and applications, 2013, 49(1): 249-253.

[9] FU S, ZHANG D, MONTEWKA J, et al. Towards a probabilistic model for predicting ship besetting in ice in arctic waters[J]. Reliability engineering & system safety, 2016, 155: 124-136.

[10] MONTEWKA J, GOERLANDT F, KUJALA P, et al. Towards probabilistic models for the prediction of a ship performance in dynamic ice [J]. Cold regions science and technology, 2015, 112: 14-28.

[11] 付姗姗, 张笛, 桑凌志, 等. 柔性工程理论在极地船舶航行风险防控中的应用 [J]. 极地研究, 2016, 28(2): 250-256.

FU Shanshan, ZHANG Di, SANG Lingzhi, et al. Incorporation of resilience engineering theory into risk prevention and control in polar waters[J]. Chinese journal of polar research, 2016, 28(2): 250-256.

[12] 张笛, 严新平, 张金奋, 等. 基于模糊层次分析法的枯水期长江通航风险评价研究 [J]. 交通信息与安全, 2013, 31(3): 82-86.

ZHANG Di, YAN Xinping, ZHANG Jinfen, et al. Navigational risk assessment of Yangtze River in dry season with fuzzy analytic hierarchy process[J]. Journal of transport information and safety, 2013, 31(3): 82-86.

[13] CHANG D Y. Applications of the extent analysis method on fuzzy AHP [J]. European journal of operational research, 1996, 95(3): 649-655.

[14] WANG Y M, ELHAG T M S, HUA Z. A modified fuzzy logarithmic least squares method for fuzzy analytic hierarchy process [J]. Fuzzy sets & systems, 2006, 157(23): 3055-3071.

[15] 胡甚平, 黄常海, 张浩. 基于云模型的海上交通系统风险蒙特卡罗仿真[J]. 中国安全科学学报, 2012, 22(4): 20-26.

HU Shenping, HUANG Changhai, ZHANG Hao. Cloud model-based simulation of system risk of marine traffic by Monte Carlo algorithm[J]. China safety science journal, 2012, 22(4): 20-26.

[16] ZHANG D, YAN X P, YANG Z L, et al. Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River [J]. Reliability engineering & system safety, 2013, 118: 93-105.

本文引用格式:

付姗姗,张笛,张明阳,等. 北极水域船舶航行环境风险影响因素识别[J]. 哈尔滨工程大学学报, 2017, 38(11): 1682 -1688.

FU Shanshan, ZHANG Di, ZHANG Mingyang, et al. Identification of environmental risk influencing factors for ship operations in Arctic waters[J]. Journal of Harbin Engineering University, 2017, 38(11): 1682 -1688.

IdentificationofenvironmentalriskinfluencingfactorsforshipoperationsinArcticwaters

FU Shanshan1,2,3, ZHANG Di1,2, ZHANG Mingyang1,2, YAN Xinping1,2

(1.Intelligent Transportation System Research Center, Wuhan University of Technology, Wuhan 430063, China; 2.National Engineering Research Center for Water Transport Safety, Wuhan 430063, China; 3.College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China)

To identify problems pertaining to environmental risk factors during ship operations in Arctic waters, this study designs a systematic model to determine environmental risk influencing factors (RIFs) using an analytic hierarchy process (AHP). Owing to existing uncertainty problems in identifying the RIFs, a Monte Carlo based fuzzy AHP (MC-FAHP) approach is proposed to analyze the relative importance of RIFs via integrating the AHP, fuzzy sets (triangular fuzzy numbers, TFNs), and the Monte Carlo simulation. The proposed MC-FAHP method is used to identify the critical environmental RIFs occurring during ship operations in Arctic waters. Furthermore, the rationality of environmental RIF identification studies is validated using data and model aspects. The results identify wind, visibility, ice concentration, and temperature as critical RIFs involved in safe ship operations in Arctic waters.

Arctic waters; navigational environment; risk influencing factors; risk identification; analytic hierarchy process; fuzzy sets; Monte Carlo simulation

10.11990/jheu.201606050

http://www.cnki.net/kcms/detail/23.1390.u.20170427.1511.094.html

U698.6

A

1006-7043(2017)11-1682-07

2016-06-17.

网络出版日期:2017-04-27.

国家自然科学基金项目(51579203).

付姗姗(1987-),女,讲师,博士;

张笛(1983-),男,副研究员.

张笛,E-mail:zhangdi@whut.edu.cn.

猜你喜欢

海冰水域北极
提升水域救援装备应用效能的思考
末次盛冰期以来巴伦支海-喀拉海古海洋环境及海冰研究进展
近三十年以来热带大西洋增温对南极西部冬季海冰变化的影响
进博会水域环境保障研究及展望
北极有个“放屁湖”
柳江水域疍民的历史往事
北极兔乖乖,唱起歌来
城市水域生态景观设计探讨
北极
基于SIFT-SVM的北冰洋海冰识别研究