APP下载

隔沟灌溉下水肥供应频率对芥菜生理与镉富集特性影响

2017-12-05李转玲李培岭黄国勤

农业机械学报 2017年11期
关键词:芥菜水肥根部

李转玲 李培岭 黄国勤 燕 辉

(1.江西农业大学农学院, 南昌 330045; 2.江西青年职业学院经济管理系, 南昌 330045;3.江西农业大学国土资源与环境学院, 南昌 330045)

隔沟灌溉下水肥供应频率对芥菜生理与镉富集特性影响

李转玲1,2李培岭3黄国勤1燕 辉3

(1.江西农业大学农学院, 南昌 330045; 2.江西青年职业学院经济管理系, 南昌 330045;3.江西农业大学国土资源与环境学院, 南昌 330045)

研究隔沟灌溉下芥菜生物量及重金属富集与转移特性,对土壤重金属污染植物修复具有重要作用。试验于2014年3月—2015年11月实施,设置灌水频率(I3、I4、I5分别为灌水3、4、5次,灌溉总量为0.15 m)及追肥频率(基肥0.74 g/m3,施肥总量1.3 g/m3,追肥次数F0、F1、F2、F3、F4)2因素处理,结果表明在灌溉频率影响下,芥菜叶片的超氧化歧化酶活性、脯氨酸随灌水频率增加而呈增长,丙二醛呈下降趋势。生物量、镉质量比、镉富集系数、镉累积总量I4比I3分别提高12.33%~89.71%、5.00%~44.33%、0.50%~55.36%、22.22%~114.81%;I5比I3提高19.21%~87.37%、24.00%~93.51%、13.44%~112.30%、77.42%~168.75%。其中地上部生物量增幅大于根部,镉质量比、镉富集系数和镉累积总量增幅则根部大于地上部。在施肥频率影响下生物量、镉质量比、镉富集系数和镉累积总量,高频施肥(F4)比低频施肥(F1)分别增长22.55%~99.71%、30.68%~87.40%、37.80%~112.20%、71.43%~213.51%,且低频灌溉情况下根部增幅大于地上部,中、高频率灌溉下地上部大于根部。另外转移系数随水肥供应频率增加略有下降,但整体维持较高水平。通过模型模拟与验证,表明年际间芥菜重金属修复能力对水肥供应频率响应趋于一致。

隔沟灌溉; 水肥供应频率; 芥菜; 镉富集; 土壤重金属

引言

在土壤重金属污染植物修复领域,印度荠菜作为重要的土壤重金属修复植物受到国内外广泛关注,主要用来修复土壤中镉、铅和锌等重金属污染,已有研究结果表明印度芥菜具有显著的重金属富集特性且修复效率较高[1],但受土壤水肥环境影响下印度芥菜生长发育受到抑制,进而影响土壤重金属修复效率,因此改善生育特性是稳定和提升修复效率的关键[1-3],而水肥是影响植物生长发育的重要因素,因此水肥调控理论和技术对于土壤重金属污染植物修复具有重要意义。目前常规均匀灌溉和施肥方式,水肥的深层渗漏损失及地表径流损失问题突出,而且容易造成土壤重金属污染扩散[4-6]。已有田间水肥调控技术研究表明,采用根区交替灌溉等方式节约水资源同时,减少了灌水入渗面积和地表径流,可显著降低土壤剖面根区水分、养分的深层渗漏[7-9],可能有利于控制重金属污染地表迁移和深层扩散。另外现有的水肥供应制度下植物根系发育诱导作用不明显,且养分与重金属吸收相互制约问题突出,不利于土壤复合重金属多植物吸收[10-13];现有水肥调配制度下植物生理代谢与修复特性的相互制约问题突出,影响植物重金属转运效率和累积能力[14-17]。近年来,隔沟灌溉技术得到广泛应用和推广[18],是调节大田植物水肥供应的重要技术,本文在此基础上设置隔沟交替灌溉方式,研究其对植物生育特性及植物重金属的富集能力的影响,以期为农业生态环境的重金属污染修复提供理论依据和技术支持。

1 材料与方法

1.1 供试材料

供试植物印度芥菜(B.juncea)购自湖北安谷植物科技公司。试验田位于江西农业大学科技园内, 园区内农作物试验区约11 hm2,具有完善的灌溉与排水设施,常年进行水稻、棉花、油菜等作物的水肥调控研究,本试验区土壤性质为:pH 值5.7,有机质3.56%, 全氮质量比1.45 g/kg, 碱解氮质量比142.3 mg/kg, 有效磷质量比12.24 mg/kg, 速效钾质量比154.3 mg/kg。土壤全Cd质量比为3.48~4.85 mg/kg,属于重度污染土壤。

1.2 试验设计

1.3 测定项目及方法

出苗后65 d剪取叶片测定各生理指标。超氧化歧化酶活性采用NBT光化还原法测定[18];丙二醛含量采用硫代巴比妥酸显色法测定[18];脯氨酸的测定采用磺基水杨酸法[18]。2014、2015年分别于播种后138 d、128 d收获植物 (地上部和根系)测定镉质量比; 同时取土壤样品, 土样于室温风干后过孔径为0.85 mm筛, 分析有效态镉质量比。植物镉含量采用石墨炉原子吸收光谱法检测,采用富集系数(植物重金属含量/土壤中重金属含量)和转移系数(地上部重金属含量/根部重金属含量)评价植物富集土壤重金属的能力,越大说明植物富集重金属能力与重金属转移能力越强。

表1 隔沟灌溉下芥菜水肥供应频率试验方案Tab.1 Experiment scheme of mustard irrigation and fertilizer supply frequency under separate furrow irrigation

1.4 统计学分析

数据取3次重复的平均值, 用SPSS 11.5软件分析处理平均值间的差异显著性。

1.5 模型构建

本模型将Logistic模型中不以时间为自变量,而是用灌水量和施肥量作为自变量的一个函数来代替,将灌水量、施肥量对芥菜生物量、镉含量、镉富集系数和镉累积总量的影响考虑在内,方程构建为

(1)

式中D——模拟指标(生物量、重金属质量比、重金属富集系数、重金属累积质量)

以往的继续教育资源供给者主要集中于高校继续教育部门和政府劳动社会保障部门,但随着继续教育需求者数量增多、个性化需求增多,一些行业企业、培训机构等亦参与进来,呈现出供给者从单一到多元化的趋势。

Dmax——模拟指标的最大值

I——灌水频率F——施肥频率

τ(I,F)=ε+λI+ωF

则式(1)可写为

(2)

模型模拟采用软件Sigmaplot 12.5,模型验证中均方根误差计算式为

(3)

2 结果与分析

2.1隔沟灌溉下水肥供应频率对芥菜生理生态特性的调节作用

通过隔沟灌溉调节植物生理指标和发育特性,为植物重金属高效转移与累积奠定生理基础。本试验中芥菜叶片的超氧化歧化酶活性、脯氨酸质量比随灌水频率增加而增长,丙二醛呈显著下降趋势(表2),表明增加灌溉频率提高了芥菜抗氧化系统能力,有利于根部重金属吸收、地上部重金属转移和累积。在灌溉频率影响下,芥菜发育特性随灌溉频率增加而显著改善,生物量I4相比I3地上部、根部分别提高12.33%~89.71%、22.70%~50.41%,I5比I3地上部、根部分别提高35.65%~78.35%、19.21%~87.37%(图1),可见生物量累积显著提高,为芥菜重金属转运载体形成奠定基础。

在施肥频率影响下,芥菜叶片生理指标对施肥频率响应不显著,芥菜叶片超氧化歧化酶、脯氨酸质量比和丙二醛总体生理指标差异较小(表2)。但芥菜生物量同一灌水频率下相比F0,由F1、F2、F3和F4地上部增长为22.55%~99.71%,根部增长29.87%~64.75%(图1),其中低灌水频率(I3)下肥料肥力释放效应有限,养分主要满足芥菜根部发育需求,因此根部增幅大于地上部;随着灌水频率增长肥料肥力释放效应越明显,在中(I4)、高(I5)灌水频率下则地上部增幅大于根部,有利于地上部重金属转运载体形成。图中差异显著性水平小写英文字母为地上部,大写字母为根部(Plt;0.05)(下同)。

表2 隔沟灌溉下水肥供应频率对芥菜的叶片生理指标影响Tab.2 Effect of irrigation and fertilizer supply frequency on mustard leaf physiological indicators

注:同列不同小写字母表示差异显著性水平Plt;0.05。

图1 隔沟灌溉下灌溉和施肥频率对芥菜的生物量影响Fig.1 Effect of irrigation and fertilization frequency under separate furrow irrigation on mustard biomass

由于2015年芥菜快速生育期连续阴天数较多,叶片超氧化歧化酶、脯氨酸质量比比2014年略有降低,而丙二醛略有升高,且生物量比2014年略有降低,对芥菜重金属转运与累积有显著影响。

2.2隔沟灌溉下芥菜镉质量比与富集系数对水肥供应频率的响应

重金属质量比与富集系数是反映植物重金属累积潜力,已有研究结果表明利用隔沟灌溉能够诱导植物根系水平和深层延伸,进而改善根系与土壤重金属接触表面积。由表3可知,本试验中随灌水频率增加,根部镉吸收和富集特性均显著提升,根部镉质量比、富集系数I4比I3分别提高5.00%~44.33%、0.5%~55.36%,I5比I3分别提高49.78%~93.51%、57.53%~112.30%。另外地上部镉富集特性也得到显著改善,地上部镉质量比、富集系数I4比I3分别提高5.00%~23.96%、5.18%~35.50%,I5比I3分别提高24.00%~48.40%、13.44%~63.88%,表明增加灌溉频率有利于重金属吸收和转运特性提升。

隔沟灌溉有利于肥料肥力释放,本试验中增加施肥频率能够通过养分促进重金属转运与累积,由F1到F4地上部、根部的镉质量比分别提高30.68%~58.26%、36.82%~87.40%,富集系数分别提高40.73%~79.22%、37.80%~112.20%,而且灌溉频率越高情况下根部镉质量比、富集系数由F1到F4增幅越大,说明施肥频率对芥菜重金属富集特性具有显著调节作用。在2015年连续阴天数较多情况下芥菜根部重金属离子渗透作用下降,致使重金属质量比与富集系数比2014年略有偏低。

2.3隔沟灌溉下水肥供应频率对芥菜重金属累积与转移特性影响

镉累积总量与转移系数是反映芥菜修复能力重要指标,由于隔沟灌溉提高了植物根部吸收性能和水分转运效率,可能有利于植物重金属由根部至地上部转移。由图2可知,本试验中增加灌溉频率促进了芥菜重金属高效转移与累积,其中地上部镉累积总量I4比I3、I5比I3分别提高25.71%~114.81%、77.42%~140.00%,根部镉累积总量I4比I3、 I5比I3分别提高22.22%~106.25%、87.5%~168.75%,另外根部镉累积量的增幅大于地上部,使得转移系数I4比I3以及I5比I3下降0~32.99%,但总体转移系数维持较高水平。

表3 隔沟灌溉下水肥供应频率对芥菜镉的质量分数及富集系数影响Tab.3 Effect of irrigation and fertilizer supply frequency on Cd mass fraction and enrichment coefficientunder separate irrigation

图2 灌溉与施肥频率影响下芥菜镉累积总量及转移系数Fig.2 Mustard cadmium accumulation amount and transfer coefficient under influence of irrigation and fertilization frequency

隔沟灌溉下增加施肥频率有利于肥料肥力释放,促进重金属累积载体形成, 其中F4比F1处理的镉累积总量地上部和根部分别提高71.43%~213.51%、89.47%~181.81%,可见根部和地上部镉累积总量整体显著提升。另外转移系数低灌溉频率(I3)情况下随施肥频率增加(F4相比F1)提高4.55%~5.81%,而I4和I5情况下转移系数下降11.63%~19.32%,但整体维持较高水平。由于2015年连续阴雨天数较多影响了肥料肥力释放,致使芥菜重金属累积水平比2014年略有下降。

2.4隔沟灌溉下芥菜生物量与镉累积对水肥供应频率响应模拟

芥菜生物量、镉质量比、镉富集系数和镉累积量等指标整体上反映了重金属修复能力,本文利用2014年试验结果建立芥菜重金属修复能力模型,再利用2015年试验结果进行模型验证,分析年际间芥菜修复能力的差异性。模型系数回归值和拟合度检验(表4)表明模型拟合度相对较好。2015年度模型试验验证(图3)得出决定系数R2在0.739~0.922之间,可见年际间芥菜生物量及重金属累积特性对水肥供应频率的响应趋于一致,同时表明隔沟灌溉下芥菜生育与镉修复能力对水肥供应频率响应较为敏感,是土壤重金属植物修复技术调控的重要措施。

表4 生物量响应模型的回归系数和拟合度检验Tab.4 Biomass response model of regression coefficient value and goodness of fit tests

注:ε、λ、ω分别为模型式(2)的系数。

图3 芥菜生物量及重金属累积特性的模型验证Fig.3 Model validation of mustard biomass and heavy metal accumulation characteristics

3 讨论

3.1 芥菜生理特性和生物量累积的变化规律

隔沟灌溉利用根系的干旱-复水-干旱的锻炼,能够刺激根系活性,提高根系吸收能力[6-9]。芥菜根系发育需要提高抗氧化酶防御系统能力,抑制自由基对细胞膜结构和功能的影响[19-22],从而有效改善根部生育特性,降低重金属对芥菜生长发育的抑制作用,提高关键期的生物量累积,为芥菜重金属修复奠定生理基础。试验结果表明,增加灌溉频率显著改善芥菜抗氧化生理指标,并通过灌溉与施肥频率增加显著提升生物量,实现了芥菜生理调节及生物量高效累积的目的。相比国内外相关研究试验[23-25],本试验通过相对较少的灌水量与施肥量实现了芥菜生物量高效累积,尽管芥菜出苗后连续阴天数2015年比2014年增多,隔沟灌溉下植物生理的水分调节作用下降,但芥菜生理指标变化规律基本相同,生物量增幅未有明显下降。

3.2 芥菜重金属富集与转移特性变化规律

土壤重金属污染植物修复是以提高重金属质量分数以及富集系数、转移系数和累积总量为技术要点[26-28]。已有研究结果表明改善根系相关酶活性以及降低根部pH值,能够为重金属离子的转移与吸收奠定基础[29-30]。首先通过隔沟灌溉方式诱导植物根系水平和深层延伸[8-9],改善根系与土壤重金属接触表面积,进一步有效渗透与高效提取重金属,结果表明根部镉质量比、富集系数以及累积总量均随灌溉频率及施肥频率增加而显著增长,实现了芥菜重金属高效修复的基础目标。第二,超富集植物根部与根毛的营养成分的短程转运系统需要很多内在的载体[27,30],这些转运营养成分的载体也可转运重金属离子,隔沟灌溉提高了根部营养成分的转移效率,为重金属载体形成提供了养分基础,并通过较高的水分利用效率促进重金属由根部至地上部的转移,从而有助于超富集植物积累较高浓度的重金属,相比国内外相关研究结果,植物重金属质量分数和重金属累积总量均有显著提升[10,19,26]。本试验期间2015年比2014年连续阴雨天数增多,隔沟灌溉方式的水分调控作用下降,致使芥菜重金属质量分数与富集系数略有下降,但随水肥频率影响的变化规律相同,因此芥菜修复能力仍然维持较高水平。

3.3 芥菜生物量及重金属累积特性的模型模拟

土壤重金属植物修复的相关模型较少,依赖水肥供应的模型尚未深入开展研究,本文在Logistic模型基础上引入灌水频率和施肥频率作为影响因子,以2014年试验数据进行了芥菜的生物量、镉质量比、镉富集系数及镉累积总量的模拟,以及模型系数回归值和拟合度检验,通过2015年数据进行模型验证,结果表明模型拟合度相对较好,能够一定程度反映隔沟灌溉下水肥供应频率对芥菜生物量和重金属富集特性的影响,为芥菜修复土壤重金属提供理论与技术支持。

4 结束语

隔沟灌溉下水肥供应频率对芥菜具有显著的生理调节作用,增加灌溉与施肥频率有利于地上部及根部生物量累积。通过隔沟灌溉方式下水肥供应频率诱导提高了芥菜根系重金属质量比、富集系数和累积总量,并利用水肥供应频率增加为重金属转运载体形成与转移提供了动力,进而维持较高的重金属转移系数,实现了土壤重金属芥菜修复特性的显著提升。

1 WILLSCHER S, JABLONSKI L, FONA Z, et al. Phytoremediation experiments withHelianthustuberosusunder different pH and heavy metal soil concentrations[J]. Hydrometallurgy, 2017, 168:153-158.

2 SEBASTIAN W, DANIEL B, ANNA K, et al. Phytoremediation as an effective method to remove heavy metals from contaminated area-TG/FT-IR analysis results of the gasification of heavy metal contaminated energy crops[J]. Journal of the Energy Institute, 2017, 90(3):408-417.

3 ARITZ B, LUR E, FERNANDO B, et al. Ecosystem services and plant physiological status during endophyte-assisted phytoremediation of metal contaminated soil[J].Science of the Total Environment, 2017, 584-585:329-338.

4 JUAN M M L, MARA J, SARA M, et al. Evaluation of the potential ofAtriplexhalimusstem cuttings for phytoremediation of metal-polluted soils[J].Ecological Engineering, 2016,97: 553-557.

5 HAFIZ M T, SHAFAQAT A, MUHAMMAD R, et al. Phytoremediation of heavy metals byAlternantherabettzickiana: growth and physiological response[J]. Ecotoxicology and Environmental Safety, 2016, 126:138-146.

6 KHOKAN K, AKANDA M, BISWAS S, et al. Field performance of alternate wetting and drying furrow irrigation on tomato crop growth, yield, water use efficiency, quality and profitability[J].Journal of Integrative Agriculture, 2016, 15 (10):2380-2392.

7 XIAO Yu, ZHANG Jing, JIA Tingting, et al. Effects of alternate furrow irrigation on the biomass and quality of alfalfa (Medicagosativa)[J].Agricultural Water Management, 2015, 161:147-154.

8 SIYAL A A, MASHORI A S, BRISTOW K L, et al. Alternate furrow irrigation can radically improve water productivity of okra[J].Agricultural Water Management, 2016, 173:55-60.

9 KIDANE W, HINTSA L. Effect of different furrow and plant spacing on yield and water use efficiency of maize[J]. Agricultural Water Management, 2016, 177: 215-220.

10 NAVARRO-TORRE S, MATEOS-NARANJO E, CAVIEDES M A, et al. Isolation of plant-growth-promoting and metal-resistant cultivable bacteria fromArthrocnemummacrostachyumin theOdielmarsheswith potential use in phytoremediation[J]. Marine Pollution Bulletin, 2016,110(1): 133-142.

11 LIAO Changjun, XU Wending, LU Guoning, et al. Biosurfactant-enhanced phytoremediation of soils contaminated by crude oil using maize (Zeamays. L)[J]. Ecological Engineering, 2016, 92: 10-17.

12 HECKENROTH A, RABIER J, DUTOIT T, et al. Selection of native plants with phytoremediation potential for highly contaminated Mediterranean soil restoration: tools for a non-destructive and integrative approach[J].Journal of Environmental Management, 2016,183(3):850-863.

13 CHILUNDO M, JOEL A, WESSTRÖM I, et al. Response of maize root growth to irrigation and nitrogen management strategies in semi-arid loamy sandy soil[J]. Field Crops Research, 2017, 200:143-162.

14 MANI D, KUMAR C, KUMAR P. Integrated micro-biochemical approach for phytoremediation of cadmium and lead contaminated soils usingGladiolusgrandiflorusL. cut flower[J].Ecotoxicology and Environmental Safety, 2016, 124:435-446.

15 ULLAH A, SUN Heng, MUHAMMAD F, et al Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review[J]. Environmental and Experimental Botany, 2015, 117:28-40.

16 XI Mao, HAN Fengxiang, SHAO Xiaohou, et al. Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil[J]. Ecotoxicology and Environmental Safety, 2016, 125:16-24.

17 BAUDDH K, SINGH K, SINGH B, et al. Ricinus communis: a robust plant for bio-energy and phytoremediation of toxic metals from contaminated soil [J]. Ecological Engineering, 2015, 84:640-652.

18 ZHANG Zengqiang, WANG J, TANG Cilai, et al. Heavy metals and metalloids content and enrichment in Gulf Coast sediments in the vicinity of an oil refinery[J].Journal of Geochemical Exploration, 2015, 159:93-100.

19 BALDANTONI D, CICATELLI A, BELLINO A, et al. Different behaviours in phytoremediation capacity of two heavy metal tolerant poplar clones in relation to iron and other trace elements[J]. Journal of Environmental Management, 2014, 146: 94-99.

20 ZHU Chuanyong, TIAN Hezhong, CHENG Ke, et al. Potentials of whole process control of heavy metals emissions from coal-fired power plants in China[J]. Journal of Cleaner Production, 2016, 114: 343-351.

21 GALAL T M, SHEHATA H S. Bioaccumulation and translocation of heavy metals byPlantagomajorL. grown in contaminated soils under the effect of traffic pollution[J]. Ecological Indicators, 2015, 48: 244-251.

22 张秋霞,张合兵,张会娟,等.粮食主产区耕地土壤重金属高光谱综合反演模型[J/OL].农业机械学报,2017,48(3):148-155.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20170319amp;flag=1amp;journal_id=jcsam.DOI:10.6041/j.issn.1000-1298.2017.03.019.

ZHANG Qiuxia, ZHANG Hebing, ZHANG Huijuan, et al. Hybrid inversion model of heavy metals with hyperspectral reflectance in cultivated soils of main grain producing areas[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2017,48(3):148-155. (in Chinese)

23 庞妍,同延安,梁连友,等.污灌农田土壤-作物体系重金属污染评价[J/OL].农业机械学报,2015,46(1):148-154.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20150122amp;flag=1amp;journal_id=jcsam. DOI:10.6041/j.issn.1000-1298.2015.01.022.

PANG Yan, TONG Yan’an, LIANG Lianyou, et al. Assessment of heavy metal pollution in soil-crop system on sewage irrigated farmland[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2015,46(1):148-154. (in Chinese)

24 杨卓,韩德才,李博文. 不同栽培条件下印度芥菜对重金属的吸收比较[J]. 环境科学研究,2014,27(3): 295-300.

YANG Zhuo,HAN Decai,LI Bowen.Comparative study of different cultivation conditions on the absorption of heavy metals inBrassicajuncea[J].Research of Environmental Sciences,2014,27(3): 295-300. (in Chinese)

25 王豹,黄标,齐雁冰,等.风干对淹水稻田土重金属形态及其作物有效性的影响[J/OL].农业机械学报,2013,44(5):89-95.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20130517amp;flag=1amp;journal_id=jcsam.DOI:10.6041/j.issn.1000-1298.2013.05.017.

WANG Bao, HUANG Biao, QI Yanbing, et al. Effect of air drying on speciation and plant availability of heavy metals in flooded rice paddies[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2013,44(5):89-95. (in Chinese)

26 SUN Zheng, CHEN Jiajun, WANG Xingwei, et al. Heavy metal accumulation in native plants at a metallurgy waste site in rural areas of Northern China[J].Ecological Engineering, 2016, 86: 60-68.

27 SUN Yuebing, ZHOU Qixing, XU Yingming, et al. Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plantTagetespatula[J]. Journal of Hazardous Materials, 2011, 186(2-3):2075-2082.

28 DONI S, MACCI C, PERUZZI E, et al. Heavy metal distribution in a sediment phytoremediation system at pilot scale[J].Ecological Engineering, 2015, 81:146-157.

29 TOPAK R, ACAR B, UYANÖZ R, et al. Performance of partial root-zone drip irrigation for sugar beet production in a semi-arid area[J]. Agricultural Water Management, 2016, 176:180-190.

30 PARVIZI H, SEPASKHAH A R, AHMADI S H. Physiological and growth responses of pomegranate tree (Punicagranatum(L.) cv. Rabab) under partial root zone drying and deficit irrigation regimes[J].Agricultural Water Management, 2016, 163:146-158.

EffectsofWaterandFertilizerSupplyonPhysiologicalandCadmiumEnrichmentandTransferCharacteristicsofBrassicajunceaunderSeparateFurrowIrrigation

LI Zhuanling1,2LI Peiling3HUANG Guoqing1YAN Hui3

(1.AgricultureCollege,JiangxiAgriculturalUniversity,Nanchang330045,China2.DepartmentofEconomicManagement,JiangxiYouthVocationalCollege,Nanchang330045,China3.CollegeofLandResourcesandEnvironment,JiangxiAgriculturalUniversity,Nanchang330045,China)

Mustard biomass and heavy metal enrichment and transfer characteristic under the separate furrow irrigation was studied, which plays an important role in the phytoremediation of soil heavy metals pollution. The experiment was conducted from March, 2014 through November, 2015, the irrigation frequency (I3, I4 and I5 were irrigated 3, 4 and 5 times, respectively, and the irrigation amount was 0.15 m) and frequency of fertilizer (base fertilizer was 0.74 g/m3, fertilizer amount was 1.3 g/m3, according to water consumption of 0.01 m, according to frequency of F0, F1, F2, F3 and F4) were set up as two factors. Results showed that under the influence of irrigation frequency, mustard leaves of super oxide dismutase (sod) activity and proline were increased with the increase of irrigation frequency, malondialdehyde was on the decline. Biomass, cadmium mass fraction, cadmium enrichment coefficient, cadmium total accumulated amount of cadmium of I4 was increased by 12.33%~89.71%, 5.00%~44.33%, 0.50%~55.36% and 22.22%~114.81%, and those of I5 were increased by 19.21%~87.37%, 24.00%~93.51%,13.44%~112.30% and 77.42%~168.75%, respectively, compared with those of I3. The growth of biomass in the aboveground was greater than that of the root, but the root of the cadmium mass fraction, the cadmium concentration coefficient and the total amount of cadmium accumulation were greater than the ground. In the influence of fertilization frequency, mustard of biomass, cadmium mass fraction, cadmium total cadmium accumulation and cadmium enrichment coefficient under high frequency fertilization (F4) were increased by 22.55%~99.71%, 30.68%~87.40%, 37.80%~112.20% and 71.43%~213.51% than those under low frequency fertilization (F1), respectively, the roots growing rate was greater than the grounds in low frequency irrigation, and the middle and higher frequencies of irrigation the ground was lower than the roots. In addition, the cadmium transfer coefficient was decreased slightly with the increase of supply of water and fertilizer, but the overall maintenance level was high. Through model simulation and verification, the result showed that the ability of mustard heavy metal repair to be consistent with the frequency response of water and fertilizer.

separate furrow irrigation; water and fertilizer supply frequency; mustard; cadmium enrichment; soil heavy metal

10.6041/j.issn.1000-1298.2017.11.031

S278

A

1000-1298(2017)11-0253-08

2017-06-30

2017-09-08

国家自然科学基金项目(51469008、41661070)、江西省青年科学基金重点项目(20171ACB21024)、江西省科技计划项目(20151BBF60059)和江西农业大学研究生创新专项资金项目(NDYC2017-B002)

李转玲(1983—),女,博士生,江西青年职业学院讲师,主要从事农田土壤重金属污染植物修复研究,E-mail: 616396687@qq.com

黄国勤(1962—),男,教授,博士生导师,主要从事农业生态修复理论与技术研究,E-mail: hgqjxnc@sina.com

猜你喜欢

芥菜水肥根部
雅苒致力于推动水肥一体化
“水肥一体”新系统 助力增收有一手
不同芥菜品种(系)对镉胁迫的响应
一起GIS终端环氧套管法兰根部开裂的原因分析
航空液压导管根部喷丸强化性能研究
浅谈水肥一体化技术在北方贫困山区的应用与推广
佳蔬良药话芥菜
基于水肥耦合模型的上海地区设施番茄水肥方案研究
根部穿孔性阑尾炎的腹腔镜治疗策略
三角柱体对机翼根部马蹄涡的影响