APP下载

离子液体预处理对马铃薯茎叶厌氧消化的影响

2017-11-16葛一洪罗时海李姗珊于秀男郭晓慧

农业机械学报 2017年10期
关键词:产气气量纤维素

葛一洪 邱 凌 罗时海 李姗珊 于秀男 郭晓慧

(1.西北农林科技大学农学院, 陕西杨凌 712100;2.西北农林科技大学农业部农村可再生能源开发利用西部科学观测实验站, 陕西杨凌 712100;3.西北农林科技大学机械与电子工程学院, 陕西杨凌 712100)

离子液体预处理对马铃薯茎叶厌氧消化的影响

葛一洪1,2邱 凌2,3罗时海2,3李姗珊2,3于秀男2,3郭晓慧2,3

(1.西北农林科技大学农学院, 陕西杨凌 712100;2.西北农林科技大学农业部农村可再生能源开发利用西部科学观测实验站, 陕西杨凌 712100;3.西北农林科技大学机械与电子工程学院, 陕西杨凌 712100)

马铃薯茎叶是一种丰富的木质纤维素生物质资源,但其高结晶度、稳定的刚性结构使其不易水解酸化,微生物在短时间内难以直接高效利用。研究了离子液体和助溶剂对马铃薯茎叶进行预处理后其木质纤维素结构组分变化及厌氧消化产沼气的变化。结果表明,预处理后的马铃薯茎叶木质素质量分数降低31.8%~43.9%,离子液体脱除马铃薯茎叶木质素能力由高到低依次为[C2mim]Ac、[C2mim]Ac/DMSO、[C4mim]Cl/DMSO、DMSO、[C4mim]Cl。离子液体中阴离子可与纤维素羟基上的氢质子形成氢键作用,降低其结晶度,长链分子断裂成短链分子,使厌氧消化的启动滞后期较未处理马铃薯茎叶提前9 d,累积产沼气量提高3.2%~76.3%,最高产甲烷体积分数提高14.3%~25.1%。各处理组累积产沼气量和最高产甲烷体积分数分别为:T5(7.21 L,69.2%)、T4(5.12 L,64.5%)、T2(5.07 L,65.7%)、T3(4.35 L,64.3%)、T1(4.22 L,63.2%)。经无机盐-离子液体双水相体系回收DMSO、[C2mim]Ac和[C4mim]Cl,回收率分别为95.1%、91.8%和89.6%。

马铃薯茎叶; 离子液体; 木质纤维素; 厌氧消化

引言

马铃薯茎叶属于一种木质纤维素生物质资源,主要由10%~30%的木质素、20%~45%的纤维素和20%~40%的半纤维素组成,而纤维素和半纤维素都是大分子多糖聚合物,发生水解反应时,氧桥断裂可转化成葡萄糖[1-2]。但马铃薯茎叶的细胞壁在进化的过程中形成了以纤维素为骨架物质,半纤维素附着在纤维素微纤丝表面,彼此通过氢键相连,木质素与半纤维素共价连接,填满细胞壁中纤维素和半纤维素之间的空隙形成结晶度高的疏水稳定结构[3-5]。该结构使得微生物不能在短时间内将马铃薯茎叶的细胞壁进行降解,这意味着木质纤维素无法被微生物直接高效利用[6-9]。因此需要先将马铃薯茎叶进行预处理,打散其紧密结构,增加表面多孔性,使微生物能迅速接触其中的大分子多糖聚合物,生产甲烷[10-12]。马铃薯茎叶的资源量、分布情况和资源化利用途径见文献[13]。

木质纤维素类生物质资源的预处理方法有很多,酸处理、碱处理、氧化处理、离子液体处理等均属于化学预处理方法。CHANDRA等[14]在37℃下,用4% NaOH对小麦秸秆进行预处理120 h,使沼气产量提高了87.5%,甲烷产量提高了111.6%。MONLAU等[15]用4% HCl(pH值2.3)在170℃条件下对向日葵秆进行预处理1 h,使产甲烷潜力提高了21%~29%。各种方法均能增加原料的可触面积,溶解半纤维素和木质素,但只有离子液体预处理方法能降低纤维素的结晶度[16],且其他方法都存在处理周期长、回收难或处理效果差等问题。

离子液体(Ionic liquids, ILs)是一种在室温范围(20~25℃)内均呈液态的熔融盐,由有机阳离子和无机(有机)阴离子构成,具有对无机和有机化合物良好的溶解性、导电性好、强极性、不易挥发、易合成、易回收、可循环使用、对水和空气稳定、无毒环保等优点[17-20]。SWATLOSKI等[21]发现离子液体1-丁基-3-甲基咪唑氯盐能直接溶解纤维素,LI等[22]发现离子液体预处理柳枝稷可降低其中纤维素的结晶度并促进其水解过程。离子液体预处理马铃薯茎叶进行厌氧消化的研究未见报道,为此本文选用离子液体对马铃薯茎叶进行预处理,研究其对马铃薯茎叶厌氧消化产沼气的促进效果及产气特性,以期为离子液体在马铃薯茎叶这一生物质资源中的开发和利用研究提供理论依据与实验数据参考,从而更好地为工业应用提供科学依据。

1 材料与方法

1.1 试验材料

(1)马铃薯茎叶取自陕西省杨凌国家农业高新技术产业区现代农业示范园,取回后自然晒干、粉碎至2~3 mm备用。

(2)1-乙基-3-甲基咪唑乙酸盐([C2mim]Ac,W131887),1-丁基-3-甲基咪唑氯盐([C4mim]Cl,B110177),助溶剂二甲基亚砜(Dimethyl sulfoxide, DMSO,D103277)均购于上海某试剂公司。试验中其他化学试剂均购于广州市某化学试剂有限公司,均为分析纯。

(3)接种污泥源于西北农林科技大学农业部农村可再生能源开发利用西部科学观测实验站长期驯化的厌氧污泥。试验原料的成分含量如表1所示。

表1 试验材料成分含量Tab.1 Components and contents of experimental materials

1.2 试验方法

1.2.1预处理方法

于500 mL高筒烧杯中按质量分数5%加入马铃薯茎叶样品5 g和100 g ILs,添加助溶剂的处理组分别加入20 g DMSO。在130℃硅油浴加热下磁力搅拌进行溶解,处理时间为120 min。样品加热溶解后于高筒烧杯中加入100 mL抗溶剂(去离子水与丙酮体积比1∶1),随即形成沉淀物,即预处理样品再生成富纤维材料。再将样品置于离心管,10 000 r/min离心5 min后过滤上清,并用去离子水反复冲洗沉淀物3次,置于90℃干燥箱中加热干燥24 h后备发酵使用。

1.2.2回收ILs方法

离子液体回收采用无机盐-离子液体双水相体系,加入20 g K3PO4于含有ILs的溶液中,振荡混匀后在室温下静置12 h,静置分层后上层为富离子液体相,下层为富无机盐相[23]。

1.2.3厌氧消化方法

厌氧消化器采用500 mL发酵瓶,发酵体积为400 mL,处理组装100 mL接种物、15 g未处理马铃薯茎叶、5 g经ILs预处理的再生马铃薯茎叶;对照组装100 mL接种物和20 g未处理马铃薯茎叶,填料密封后向厌氧消化器中吹入氮气2 min以排净厌氧消化器内的氧气,每个厌氧消化器连接一个集气瓶和收集瓶,相互之间用乳胶管连接密封,厌氧消化器置于往复式恒温震荡水浴摇床进行序批式中温厌氧消化(35℃)至产气结束。试验共计6个处理,每个处理设置3个重复,试验装置如图1所示。

图1 试验装置示意图Fig.1 Test unit schematic diagram1.取液样阀门 2.取样管 3.厌氧消化瓶 4.导气管 5.可控恒温水浴摇床 6.取气样三通阀门 7.集气瓶 8.排水管 9.集水量筒

每天08:00和20:00打开摇床,100 r/min振荡20 min,使反应器内的料液混合均匀。每天09:00测定一次气体产量和气体成分。

1.2.4指标检测方法

每日气体产量采用排水集气法测定;气体成分采用GC2014C型气相色谱仪(日本岛津公司)测定,TCD检测器,检测器和进样口温度为100℃,柱温箱温度为90℃,载气为氩气,流速为30 mL/min;总固体采用105℃干燥箱加热干燥24 h至质量恒定,差重法测定;挥发性固体采用550℃马弗炉灼烧6 h,差重法测定;马铃薯茎叶纤维素、半纤维素、木质素采用范氏法换算[24],中性洗涤纤维和酸性洗涤纤维采用A220型半自动纤维素测定仪(美国ANKOM公司)测定。

2 结果与分析

2.1 ILs对马铃薯茎叶木质纤维素结构组成的影响

试验结果表明,通过DMSO、[C2mim]Ac、[C2mim]Ac/DMSO、[C4mim]Cl、[C4mim]Cl/DMSO处理后,马铃薯茎叶再生纤维素质量分数分别提高19.5%、27.5%、22.7%、17.3%、20.8%,在试验过程中可观察到马铃薯茎叶的外形结构逐渐发生膨胀,随后伴有大量的团状微粒出现。BRANDT等[25]研究松木片中木质纤维素降解时也出现膨胀及团聚现象,XU等[26]研究认为膨胀和团状微粒的出现是由纤维素的羟基质子与ILs中阴离子形成大量氢键导致。这也就表明ILs破坏了马铃薯茎叶的木质纤维素结构,增加了其表面的多孔性使其结晶度降低而结构变得松散。

通过试验观察可知,助溶剂DMSO的加入可明显降低离子液体的粘稠度,并增加预处理系统的流动性。结果表明,在[C2mim]Ac、[C4mim]Cl中加入DMSO后,马铃薯茎叶木质素质量分数分别为11.8%、12.3%,T5处理组(表2)较T3处理组脱除木质素效果提高了8.9%,但DMSO对[C2mim]Ac的影响效果不显著。由表2可知,马铃薯茎叶经离子液体在130℃下预处理120 min后,其再生纤维素质量分数可提高17.3%~27.5%,木质素质量分数可降低31.8%~43.9%,各处理中所用离子液体溶解和脱除木质纤维素能力由高到低依次为[C2mim]Ac、[C2mim]Ac/DMSO、[C4mim]Cl/DMSO、DMSO、[C4mim]Cl。

2.2 ILs对马铃薯茎叶厌氧消化产气特性的影响

离子液体对马铃薯茎叶厌氧消化的日产气变化影响如图2所示,未经处理的马铃薯茎叶直到厌氧消化第10天才开始正式产气,单日产气量0.09 L。而经过离子液体处理的马铃薯茎叶则在厌氧消化第1天就开始正常产气,单日产气量分别为T1处理组0.07 L、T2处理组0.13 L、T3处理组0.16 L、T4处理组0.10 L、T5处理组0.09 L。结果表明ILs中Ac-、Cl-离子和马铃薯茎叶纤维素长链分子中—OH上的氢质子形成氢键作用,导致纤维素的结晶度降低,长链上的氧桥更易断裂变成短链分子[27],使马铃薯茎叶在厌氧消化水解酸化阶段的启动迟滞期缩短了9 d。

表2 不同离子液体预处理马铃薯茎叶木质纤维素结构组成变化Tab.2 Lignocellulosic composition of untreated and pretreated potato stem leaves by ILs

图2 不同ILs预处理马铃薯茎叶厌氧消化日产气量变化Fig.2 Changes of daily biogas production from potato stem leaves untreated and pretreated by ILs

厌氧消化前15 d,各ILs处理组均出现1或2次产气高峰。在所有处理中第1个产气高峰出现在第5天的T2处理组,单日产气量为0.27 L。T5处理组第12天的单日产气量最高,达到整个厌氧消化周期的峰值0.55 L,而对照组的产气最高峰出现在第21天,单日产气量为0.26 L,比T5处理组单日产气量低52.7%。T2和T4处理组在发酵过程中同时在第14和26天出现2次产气高峰,T2处理组单日产气量分别为0.52 L和0.43 L,T4处理组单日产气量分别为0.45 L和0.30 L,较对照组平均高出108.4%。T3处理组在发酵前10 d的日产气量均高于T5处理组,平均每日产气量高出0.08 L,但发酵第13天,T3处理组日产气量开始骤降,到第21天产气已基本停止,而T5处理组日产气量仍有0.15 L。在厌氧消化第40天,其它处理组均已基本停止产气时(小于0.09 L),T5处理组仍能保持日产气量0.14 L。

各处理组累积产气量如图3所示。由图可知,厌氧消化前14 d,T3处理组累积产气量最高(3.27 L),但从第15天被T5处理组超越,并且最终所有处理中T5的累积产气量最高(7.21 L),较T3处理组高出65.7%。厌氧消化周期内T4和T2处理组的累积产气量最终并没有明显差距,分别为5.12 L和5.07 L。这说明助溶剂DMSO对[C4mim]Cl影响较大,对[C2mim]Ac几乎没有影响。ILs预处理马铃薯茎叶厌氧消化累积产气量由高到低依次为T5(7.21 L)、T4(5.12 L)、T2(5.07 L)、T3(4.35 L)、T1(4.22 L),比对照组(4.09 L)高出3.2%~76.3%。

图3 不同ILs预处理马铃薯茎叶厌氧消化的累积产气量变化Fig.3 Cumulative biogas production changes from potato stem leaves untreated and pretreated by ILs

图4 不同ILs预处理马铃薯茎叶厌氧消化产甲烷体积分数变化Fig.4 Methane concentration changes of biogas from potato stem leaves untreated and pretreated by ILs

不同离子液体预处理马铃薯茎叶厌氧消化产甲烷体积分数变化如图4所示。试验表明,马铃薯茎叶经[C4mim]Cl、[C4mim]Cl/DMSO、[C2mim]Ac、[C2mim]Ac/DMSO预处理后,明显提高了沼气中甲烷体积分数。厌氧消化第5天,各ILs处理组甲烷体积分数较对照组高出155.8%~223.9%(甲烷产量高出18.8~58.67 mL);第13天,各ILs处理组甲烷体积分数均已超过50%;第15天,T5处理组甲烷体积分数达到64.6%(甲烷产量为226.75 mL),而对照组甲烷体积分数仅为42.5%(甲烷产量为60.35 mL)。马铃薯茎叶经ILs预处理后,得到大量纤维素分解后的短链分子,加速了产甲烷阶段的进程,使产甲烷菌在厌氧消化初期就可以进行富集,成为优势菌种。整个厌氧消化周期内,对照组产甲烷体积分数最高为55.3%(甲烷产量为142.67 mL),各ILs处理组最高产甲烷体积分数由高到低依次为T5(69.2%)、T2(65.7%)、T4(64.5%)、T3(64.3%)、T1(63.2%),较对照组高出14.3%~25.1%。

2.3 ILs的回收

通过观察加入磷酸钾盐的无机盐-离子液体双水相体系分离ILs过程,按分离速率由快到慢依次为DMSO、[C4mim]Cl/DMSO、[C2mim]Ac/DMSO、[C2mim]Ac、[C4mim]Cl。DMSO、[C2mim]Ac和[C4mim]Cl的回收率分别为95.1%、91.8%和89.6%。结果表明,离子液体分离速率的快慢与其回收率的大小呈正相关,也就说明分离速率能够间接反映出双水相体系对离子液体的分离回收能力。

3 结论

(1)离子液体[C4mim]Cl、[C2mim]Ac和助溶剂DMSO对马铃薯茎叶进行预处理,木质素质量分数较对照组降低31.8%~43.9%,各处理组溶解和脱除木质纤维素能力由高到低依次为T2、T4、T5、T1、T3。

(2)预处理后的马铃薯茎叶可使厌氧消化启动滞后期提前9 d,各处理组厌氧消化的累积产沼气量较对照组提高3.2%~76.3%,各处理组累积产沼气量由高到低依次为T5(7.21 L)、T4(5.12 L)、T2(5.07 L)、T3(4.35 L)、T1(4.22 L)、对照组(4.09 L)。各处理组最高产甲烷体积分数分别为T5(69.2%)、T2(65.7%)、T4(64.5%)、T3(64.3%)、T1(63.2%),较对照组(55.3%)高出14.3%~25.1%。

(3)经无机盐-离子液体双水相体系回收DMSO、[C2mim]Ac和[C4mim]Cl,回收率分别为95.1%、91.8%和89.6%。另外离子液体预处理样品后的化学残留极少,对样品的后续处理影响较低。

1 HA M A, APPERLEY D C, EVANS B W, et al.Fine structure in cellulose microfibrils: NMR evidence from onion and quince [J].Plant, 1998, 16(2):183-190.

2 ATALLA R H, VANDERHART D L.Native cellulose.A composite of two distinct crystalline forms [J].Science, 1984, 223:283-285.

3 翟蔚, 陈洪章, 马润宇.离子液体中纤维素的溶解及再生特性[J].北京化工大学学报:自然科学版, 2007, 34(2): 140-143.

ZHAI Wei, CHEN Hongzhang, MA Runyu.Structural characteristics of cellulose after dissolution and regeneration from the ionic liquid [Bmim]Cl [J].Journal of Beijing University of Chemical Technology: Natural Science Edition, 2007, 34(2): 140-143.(in Chinese)

4 ADEMARK P, VARGA A, MEDVE J, et al.Softwood hemicellulose-degrading enzymes fromAspergillusniger: purification and properties of a beta-mannanase [J].Journal of Biotechnology, 1998, 63(3):199-210.

5 MOROHOSHI N.Chemical characterization of wood and its components [M]∥HON D N N, SHIRAISHI N.Wood and cellulosic chemistry.New York: Marcel Dekker, Inc., 1991: 331-392.

6 张元晶, 魏刚, 张小冬, 等.木质纤维素生物质预处理技术研究现状[J].中国农学通报, 2012, 28(11): 272-277.

ZHANG Yuanjing, WEI Gang, ZHANG Xiaodong, et al.Status in pretreatment technologies of lignocellulosic biomass [J].Chinese Agricultural Science Bulletin, 2012, 28(11): 272-277.(in Chinese)

7 HSU T A.Pretreatment of biomass [M]∥WYMAN C E.Handbook on bioethanol: production and utilization.Washington, DC: Taylor & Francis, 1996: 179-212.

8 KIM S, HOLTZAPPLE M T.Lime pretreatment and enzymatic hydrolysis of corn stover [J].Bioresource Technology, 2005, 96(18):1994-2006.

9 ZHENG Y.Lignocellulosic biomass pretreatment for bioethanol production [M]∥ERBAUM J B.Bioethanol: production, benefits and economics.New York: Nova Science Publishers, 2009:1-48.

10 FERNANDES T V, KLAASSE BOS G J, ZEEMAN G, et al.Effects of thermo-chemical pretreatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass [J].Bioresource Technology, 2009, 100(9): 2575-2579.

11 LIEW L N, SHI J, LI Y.Methane production from solid-state anaerobic digestion of lignocellulosic biomass [J].Biomass and Bioenergy, 2012, 46: 125-132.

12 XIAO W P, CLARKSON W W.Acid solubilization of lignin and bioconversion of treated newsprint to methane [J].Biodegradation, 1997, 8(1): 61-66.

13 葛一洪, 邱凌, HASSANEIN A A M, 等.马铃薯茎叶与玉米秸秆混合厌氧消化工艺参数优化[J/OL].农业机械学报, 2016, 47(4): 173-179.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=20160423&journal_id=jcsam.DOI: 10.6041/j.issn.1000-1298.2016.04.023.

GE Yihong, QIU Ling, HASSANEIN A A M, et al.Optimization of anaerobic digestion parameters with mixed material of potato stem leaf and corn straw [J/OL].Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(4): 173-179.(in Chinese)

14 CHANDRA R, TAKEUCHI H, HASEGAWA T, et al.Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments [J].Energy, 2012, 43: 273-282.

15 MONLAU F, BARAKAT A, STEYER J P, et al.Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks [J].Bioresource Technology, 2012, 120: 241-247.

16 ZHENG Yi, ZHAO Jia, XU Fuqing, et al.Pretreatment of lignocellulosic biomass for enhanced biogas production [J].Progress in Energy and Combustion Science.2014, 42:35-53.

17 HAYKIR N I, BAHCEGUL E, BICAK N, et al.Pretreatment of cotton stalk with ionic liquids including 2-hydroxy ethyl ammonium formate to enhance biomass digestibility [J].Industrial Crops and Products, 2013, 41: 430-436.

18 QIU Z, AITA G M, WALKER M S.Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse [J].Bioresource Technology, 2012, 117: 251-256.

19 GAO J, CHEN L, YAN Z, et al.Effect of ionic liquid pretreatment on the composition, structure and biogas production of water hyacinth (Eichhorniacrassipes) [J].Bioresource Technology, 2013, 132: 361-364.

20 WEERACHANCHAI P, LEE J M.Effect of organic solvent in ionic liquid on biomass pretreatment [J].ACS Sustainable Chemistry and Engineering, 2013, 1(8): 894-902.

21 SWATLOSKI R P, SPEAR S K, HOLBREY J D, et al.Dissolution of cellulose with ionic liquids [J].Journal of the American Chemical Society, 2002, 124(18): 4974-4975.

22 LI C, KNIERIM B, MANISSERI C, et al.Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification [J].Bioresource Technology, 2010, 101(13): 4900-4906.

23 LI S H, HE C Y, LIU H W, et al.Ionic liquid-based aqueous two-phase system, a sample pretreatment procedure prior to high-performance liquid chromatography of opium alkaloids [J].Journal of Chromatography B, 2005, 826(1-2): 58-62.

24 VAN SOEST P J, ROBERTSON J B, LEWIS B A.Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition [J].Journal of Dairy Science, 1991, 74(10): 3583-3597.

25 BRANDT A, HALLETT J P, LEAK D J, et al.The effect of the ionic liquid anion in the pretreatment of pine wood chips [J].Green Chemistry, 2010, 12(4): 672-679.

26 XU A, WANG J, WANG H.Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems [J].Green Chemistry, 2010, 12(2): 268-275.

27 ZHANG Y T, DU H B, QIAN X H, et al.Ionic liquid-water mixtures: enhancedKwfor efficient cellulosic biomass conversion [J].Energy Fuels, 2010, 24(4): 2410-2417.

EffectofIonicLiquidsPretreatmentonAnaerobicDigestionofPotatoStemLeaves

GE Yihong1,2QIU Ling2,3LUO Shihai2,3LI Shanshan2,3YU Xiunan2,3GUO Xiaohui2,3

(1.CollegeofAgronomy,NorthwestA&FUniversity,Yangling,Shaanxi712100,China2.WesternScientificObservingandExperimentalStationforDevelopmentandUtilizationofRuralRenewableEnergy,MinistryofAgriculture,NorthwestA&FUniversity,Yangling,Shaanxi712100,China3.CollegeofMechanicalandElectronicEngineering,NorthwestA&FUniversity,Yangling,Shaanxi712100,China)

With the fulfillment of China’s potato staple food strategy, potato stem leaves gradually become plentiful lignocellulosic biomass resources.However, its cell wall has high-crystalline structure and available surface area which were difficult to hydrolyze and produce biogas by microorganism.Therefore, the effect of lignocellulosic composition, structural and anaerobic digestion from the pretreated potato stem leaf by ionic liquids and dimethyl sulfoxide was evaluated.The potato stem leaf was pretreated with ionic liquids 1-N-butyl-3-methyimidazolium chloride ([C4mim]Cl), 1-ethyl-3-methlyimidazolium acetate ([C2mim]Ac) and dimethyl sulfoxide (DMSO) under the condition of 130℃ for 120 min.Compared with untreated group (19.8% lignin content), the composition and structure of lignocellulosic from the regenerated potato stem leaf was changed and the lignin content was reduced by 31.8%~43.9%.The dissolving capability of the solvents followed the order: [C2mim]Ac, [C2mim]Ac/DMSO, [C4mim]Cl/DMSO, DMSO, [C4mim]Cl.The anaerobic digestion data demonstrated the lag phase of anaerobic digestion start-up period was shortened by 9 d.Because the solubility of cellulose was risen with the increase of the H-bonds accepting ability of the anions which would form more efficient H-bonds between the hydroxyl protons of cellulose and the anion, meanwhile, the crystalline structure of cellulose became lower and the surface became more porous.In other words, the hydrolytic acidification stage was almost accomplished after pretreatment.Plenty of the small molecular substances, which were easy to be used by methanogens, were dissolved out.The cumulative biogas production and the highest methane content were increased by 3.2%~76.3% and 14.3%~25.1%, respectively, compared with untreated potato stem leaf.The cumulative biogas production and the highest methane content of each pretreated groups were 7.21 L and 69.2% ([C4mim]Cl/DMSO), 5.12 L and 64.5% ([C2mim]Ac/DMSO), 5.07 L and 65.7% ([C2mim]Ac), 4.35 L and 64.3% ([C4mim]Cl), 4.22 L and 63.2% (DMSO), respectively.The ionic liquids were almost completely recovered by aqueous biphasic systems (ABSs) with tripotassium phosphate (K3PO4), the recovery rates of DMSO, [C2mim]Ac and [C4mim]Cl were 95.1%, 91.8% and 89.6%, respectively.There were still many issues in putting ionic liquids into practical applications, including the high cost of ILs, regeneration systems and requirements and mechanism of inhibitor generation.Further research was urgently required to dispose such challenges.

potato stem leaves; ionic liquid; lignocellulose; anaerobic digestion

10.6041/j.issn.1000-1298.2017.10.033

X71; S216.4

A

1000-1298(2017)10-0266-06

2017-01-10

2017-05-12

国家自然科学基金面上项目(51576167)

葛一洪(1984—),男,博士生,主要从事生物质能源方面的研究,E-mail:cn.gyhong@qq.com

邱凌(1957—),男,教授,博士生导师,主要从事生物能源与环境工程方面的研究,E-mail:ql2871@126.com

猜你喜欢

产气气量纤维素
湿垃圾与病死猪混合厌氧消化产气性能研究
纳米纤维素自愈合材料的研制
纤维素基多孔相变复合材料研究
纤维素气凝胶的制备与应用研究进展
做人要有气量,交友要有雅量
Meso-mechanical model of concrete under a penetration load
气量可以学习吗
王旦的气量
基于近红外技术的苎麻叶半纤维素、纤维素、木质素及Cd含量快速测定
气量三层次