APP下载

杏区浅冷装置节能降耗潜能分析

2017-10-25王世杰大庆油田有限责任公司天然气分公司

石油石化节能 2017年9期
关键词:气量开度电能

王世杰(大庆油田有限责任公司天然气分公司)

杏区浅冷装置节能降耗潜能分析

王世杰(大庆油田有限责任公司天然气分公司)

天然气分公司的4套杏区浅冷装置,年设计伴生气总处理量51100×104m3,主要能耗设备有浅冷离心式主压缩机、制冷压缩机组、辅助机泵、电加热器、照明及其生产辅助和控制设施。针对浅冷装置的主要耗能设备,从三个方面分析了装置能耗存在问题的主要原因,确立了节能的主要方向和应采取的措施,通过优化运行和技术改造,可以实现较为明显的节能挖潜成效,达到降本增效的目的,并对同类装置的节能降耗起到一定的指导作用。

压缩机;回流;并列运行

2014年初,杏区计划处理伴生气4.0051×108m3,占分公司浅冷装置计划总处理气量的25.5%。杏区浅冷装置作为生产主力装置和能耗大户,节能降耗在分公司降本增效的管理中起着举足轻重的作用。因此,在装置的管理中,通过总结和分析装置的运行特点,开展深入挖潜的活动,掌握设备能耗损耗的规律,制定技术措施和改造方案,可以有效的降低装置的电能耗,避免电能浪费现象的发生,进一步实现杏区浅冷装置降本增效的目标。

1 现状

浅冷离心式主压缩机回流控制产生的电能损耗不受控,回流控制不够精细。杏区4套浅冷装置的主压缩机均设有回流保护工艺流程,但缺少装置处理气量与主压缩机回流开度相对应的回流数值设定表。致使在浅冷装置运行期间,为确保主压缩机平稳运行,岗位员工手动控制主压缩机的回流开度,以压缩机不喘振为指标进行模糊控制。该方式直接导致岗位操作人员凭经验控制,无法做到回流控制精细,易发生回流开度偏大的现象,不可避免的增加了压缩机的循环气量压缩,产生电能的大量损耗和不受控流失现象[1]。

杏区6kV配电室变压器负荷率低,并列运行损耗大。浅冷装置中,变压器容量的负荷设计带载余量大,目前投运的8台变压器平均负荷率低于40%,投用变压器产生的设备电能自身损耗比重增加,致使变压器在分段并列运行模式时,变压器自耗电量的比重增加。

清水泵功率无法实时调节和控制,电能损耗大。杏区浅冷装置中,E-502水冷换热器为天然气主压缩机级间冷却换热器,它是清水泵供水的主要用水负荷。2010年浅冷装置工艺改造后,E-502水冷器前方加装空冷换热器,原清水需求量大大降低。节水的同时,装置原设计清水泵负载已低于额定负载的50%,清水泵电动机的效率下降,产生载荷过低的现象,造成了电能的大量浪费。

2 潜力分析

2.1 降低处理气量单耗

杏三浅冷装置设计日处理气量40×104m3,杏九和杏V-1浅冷装置设计日处理气量30×104m3。杏区浅冷装置近5年的总处理气量波动较大,除去检修月影响,目前,装置运行期间负荷率最高接近0.9,最低0.6。主压缩机负荷率波动大,为回流开度的进一步优化控制提供了操作基础[2]。

其中,近3年的杏三浅冷装置处理气量增加明显,负荷率较高。杏九则负荷率较为平稳。可以杏三和杏九2套浅冷装置进行各自的分析和对比。

以杏三装置数据为例,2013年和2014年杏三装置运行参数统计如表1所示。表1中的7月份数值,均为装置机组检修或停机引起的月处理气量降低现象。但装置全年来气充足,负荷率均在0.80以上,该部分数据可作为回流开度控制考核的基础数据。

取2013年和2014年杏三浅冷装置同期数据对比分析见表1。2014年3月份,处理气量1061×104m3,耗电量262.52×104kWh,负荷率为0.86;同期2013年3月处理气量1092×104m3,耗电量226.69×104kWh,负荷率为0.88。通过该组数据对比可以看出,手动控制回流开度的能耗对比效果显著。两个月份浅冷装置的负荷率均在0.85以上,但电能耗差值近36×104kWh,折算电费成本约23.6万元(0.6581元/kWh)。因此,随着处理气量的波动,杏区4套浅冷装置的主压缩机回流开度若能够得到实时有效的手动调控,处理单位气量的电单耗可有效的降低,实现节能降耗的目的。

表1 2013年、2014年杏三浅冷装置运行参数

表2 2013年、2014年杏九浅冷装置运行参数

杏九浅冷装置运行分析对比,表2的月份天数按9个月统计。2013年和2014年装置负荷率基本持平,略有偏低,如图1所示,但2014年杏九浅冷主压缩机回流控制出现故障,无法将回流关死。

图1 2013年、2014年负荷率

2013年杏九浅冷装置前9个月处理伴生气量7180×104m3,耗电量1627.56×104kWh;2014年杏九浅冷装置前9个月处理伴生气量6786×104m3,耗电量1654.62×104kWh。2013年前九个月运行天数较2014年多14天,多处理湿气394×104m3,节电27.06×104kWh。显而易见,杏九2014年因主压缩机回流问题能耗显著增加。

2.2 减少变压器自身电能损耗

改变变压器运行方式,提高单台变压器的负荷率,同时降低变压器自身的电能损耗,可实现节能的目的。变压器空载损耗统计见表3。

配电设施设计时,考虑增加供电系统的可靠性,避免变压器本体故障带来的大范围低压设备失电的现象,杏区浅冷6kV配电所变压器,采用2台变压器分段并列运行方式。从配电设施多年来运行情况看,变压器设备的可靠性较高,但负荷率低,变压器具备一开一备运行条件。因此,改变变压器运行方式来节能,此方式具有极大的节电潜力和可操作性。

2.3 减少浅冷清水供水泵所需能耗

浅冷装置用水主要由水泵提供,成本主要为耗水成本与拖动电动机的能耗成本2个方面。浅冷装置中,原E-502级间水冷器前加装空冷器后,装置用水量大幅度降低,对应的水泵电动机输出功率降低。因而,在能耗方面,对电气配套控制系统进行完善,根据浅冷装置中清水流程的工艺参数要求,在装置清水需求量降低时,适时调整水泵的水量输出可有效降低电能和水的成本消耗[3]。

3 优化措施

3.1 控制浅冷主压缩机回流开度

优化浅冷主压缩机回流开度控制,可以降低处理单位气量的电能耗,在压缩机不喘振的基础上,摸清压缩机临界喘振曲线建立压缩机安全运行节能曲线,应用装置外输气量对处理气量进行校正和核对[4]。从而建立与处理气量相对应的回流开度手动控制对照表。在日常的操作管理中,建立对应回流控制操作卡,岗位工人参照操作卡中的内容进行回流控制操作。从而,降低处理气量的电单耗,实现节电的目标。预计4套浅冷装置年可节电100×104kWh。

表3 杏区浅冷变压器型号及空载损耗统计

3.2 优化变压器投运方式

完善变压器投运方式,可以减少变压器自身电能损耗,核实浅冷6kV配电所目前所带的用电负荷,计算后实践进行验证,改变变压器运行方式时,变压器的运行工况及其参数。考核变压器空载运行的电能损失,进一步核算变压器运行方式改变后的节电量。同时,做好电工巡检工作,改变运行方式后调整低压配套配电设施的运行方式,保证与变压器运行方式一致,从而实现变压器节能的目标。若变压器的运行采用一开一备的方式,经估算年可节电约32.42×104kWh。

3.3 优化水冷换热器和清水泵的控制

引入电动机的负荷输出控制设备和无功补偿设施。根据水泵的负载变化调整电动机输出功率,提高电动机运行效率,减少无功的消耗和线路损耗,从而实现节电的目的。

同时,在浅冷装置的运行操作中,浅冷E-502空冷器运行为主,原水冷换热器内水压力不变的前提下,为减少清水的需求量,在E-502水管线出口处加装压力调节阀,控制水压和流量,有效降低清水的消耗量,经估算每套装置年可节水42×104t。同时也进一步降低了水泵的负荷,间接的实现了电动机的节能目标。

4 结束语

浅冷装置的节能过程是一个动态管理的过程,该过程和装置的运行实时的工况密切相关。因而好的节能措施应和装置的实际运行工况相结合,精细化的操作和控制的是装置平稳、安全、高效率运行的必要条件。

[1]张成宝.离心式压缩机的喘振分析与控制[J].压缩机技术,2006,14(6):11-15.

[2]潘定,沈钧毅.时态数据挖掘的相似性发现技术[J].软件学报,2006,10(2):23-24.

[3]袁生斌,黑君.丙烯压缩机组联轴器改造[J].科技资讯,2015,35(31):12-14.

[4]张云,江志农,张进杰.往复式压缩机进气阀优化设计方法研究[J].流体机械,2014,21(1):51-53.

10.3969/j.issn.2095-1493.2017.09.016

王世杰,工程师,1989年毕业于东北石油大学(石油化工专业),从事油田生产技术管理工作,E-mail:twangsj@petrochina.com.cn,地址:黑龙江省大庆市红岗区油气加工一大队,163511。

2017-06-26

(编辑杜丽华)

猜你喜欢

气量开度电能
掘进机用截止阀开度对管路流动性能的影响
增大某车型车门开度的设计方法
燃烧器二次风挡板开度对炉内燃烧特性的影响
苹果皮可以产生电能
页岩超临界态吸附气量计算模型
电能的生产和运输
气量可以学习吗
海风吹来的电能
澎湃电能 助力“四大攻坚”
大港油田稳步提高产气量 提前4个月完成全年指标