非线性非局部初值的发展方程解的存在性
2017-10-23谭锦梅
谭锦梅
摘 要:在Banach空間,利用非线性泛函分析中的不动点理论,并在一定的假设下,对带有初始问题的非线性发展方程解的存在性进行研究。
关键词:凝聚映射,非线性发展方程,非局部初值
中图分类号: 文献标识码:A
0 引言
随着科学技术的发展,非局部抽象柯西问题解的存在性已在很多文章中被深入研究过。非局部抽象柯西问题它在物理、经济、通讯等领域都有着广泛的应用前景;同时,研究方法涉及到泛函分析、常微分方程、偏微分方程等基础数学理论,有着广泛的理论意义。带非局部初值的初值问题最早是在Byszweki[1]提出来的,后来许多学者利用不同的不动点定理证明其解的存在性。本文通过定义映射,用两个不动点定理的引理来证明其解在Banach空间中的存在性。
参考文献:
[1] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem[J].J Math Anal Appl,1991,(162): 494–505.
[2] S. Aizicovici, M. McKibben, Existence results for a class of abstract nonlocal Cauchy problems[J].Nonlinear Anal,2000,(39):649–668.
[3] J. Liang, T.J. Xiao, Semilinear integrodifferential equations with nonlocal initial conditions[J].Comput Math Appl,2004,(47):863–875.
[4] Y. Chen. Anti-periodic solutions for semilinear evolution equations[J].J Math Anal Appl,2006,(315):337–348.
[5] L.P. Zhu, G. Li, Nonlocal differential equations with multivalued perturbations in Banach spaces[J].Nonlinear Anal,2008,(69):2843–2850.
[6] J. Garcia-Falset, Existence results and asymptotic behavior for nonlocal abstract Cauchy problems[J]. J Math Anal Appl,2008,(338):639–652.
[7] Liu, Q. and Yuan, R., Existence of mild solutions for semilinear evolution equations with nonlocal initial conditions[J].Nonlin Anal,2009,(71):4177–4184.
[8] Zeidler, E.Nonlinear Functional Analysis and Its Applications II[M].New York:Springer,1990.
[9] W.V.Petryshyn,Structure of the fixed points sets of k-set-contractions[J]. Arch Ration Mech Anal,970/1971,(40):312–328
[10] Ph. Bénilan, Equations d'evolution dans un espace de Banach quelconque et applications, Thèse de doctorat d'?tat, Orsay, 1972.
Existence result for nonlinear evolution equations with non-local initial conditions
TAN Jin Mei
(South China University of Technology,Guangzhou 510641,China)
Abstract: In Banach space,Using Leray-Schauders topology degree theory in a nonlinear functional analysis, and under certain assumptions,it studies existence result for nonlinear evolution equations with the initial conditions.
Key Words: Leray-Schauder degree;nonlinear evolution equations;nonlocal initial condition;endprint