APP下载

科技热词

2017-09-29

科学家 2016年13期
关键词:人脸识别人脸虚拟现实

【人脸识别】

人脸识别是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。

人脸识别系统的研究始于20世纪60年代,80年代后随着计算机技术和光学成像技术的发展得到提高,而真正进入初级的应用阶段则在90年代后期,并且以美国、德国和日本的技术实现为主;人脸识别系统成功的关键在于是否拥有尖端的核心算法,并使识别结果具有实用化的识别率和识别速度;“人脸识别系统”集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术,同时需结合中间值处理的理论与实现,是生物特征识别的最新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。

传统的人脸识别技术主要是基于可见光图像的人脸识别,这也是人们熟悉的识别方式,已有30多年的研发历史。但这种方式有着难以克服的缺陷,尤其在环境光照发生变化时,识别效果会急剧下降,无法满足实际系统的需要。解决光照问题的方案有三维图像人脸识别,和热成像人脸识别。但这两种技术还远不成熟,识别效果不尽如人意。

人脸与人体的其他生物特征(指纹、虹膜等)一样与生俱来,它的唯一性和不易被复制的良好特性为身份鉴别提供了必要的前提,与其他类型的生物识别比较人脸识别具有如下特点:非强制性:用户不需要专门配合人脸采集设备,几乎可以在无意识的状态下就可获取人脸图像,这样的取样方式没有“强制性”;非接触性:用户不需要和设备直接接触就能获取人脸图像;并发性:在实际应用场景下可以进行多个人脸的分拣、判断及识别;除此之外,还符合视觉特性:“以貌识人”的特性,以及操作简单、结果直观、隐蔽性好等特点。

【虚拟现实】

虚拟现实技术是仿真技术的一个重要方向,是仿真技术与计算机图形学人机接口技术、多媒体技术、传感技术网络技术等多种技术的集合,是一门富有挑战性的交叉技术前沿学科和研究领域。虚拟现实技术(VR)主要包括模拟环境、感知、自然技能和传感设备等方面。模拟环境是由计算机生成的、实时动态的三维立体逼真图像。感知是指理想的VR应该具有一切人所具有的感知。除计算机图形技术所生成的视觉感知外,还有听觉、触觉、力觉、运动等感知,甚至还包括嗅觉和味觉等,也称为多感知。自然技能是指人的頭部转动,眼睛、手势或其他人体行为动作,由计算机来处理与参与者的动作相适应的数据,并对用户的输入作出实时响应,并分别反馈到用户的五官。传感设备是指三维交互设备。

虚拟现实技术演变发展史大体上可以分为4个阶段:有声形动态的模拟是蕴涵虚拟现实思想的第一阶段(1963)年以前,虚拟现实萌芽为第二阶段(1963—1972),虚拟现实概念的产生和理论初步形成为第三阶段(1973—1989),虚拟现实理论进一步地完善和应用为第四阶段(1990—2004)。

【人工智能】

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。

人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考,也可能超过人的智能。

人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等。总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。

【大数据】

大数据的定义是,一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。但大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为赢得竞争的关键。大数据的价值体现在以下几个方面:

1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销。

2)做小而美模式的中长尾企业可以利用大数据做服务转型。

3)面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。

“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,但企业组织利用相关数据和分析可以帮助它们降低成本、提高效率、开发新产品、做出更明智的业务决策等等。例如,通过结合大数据和高性能的分析,及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元;为成千上万的快递车辆规划实时交通路线,躲避拥堵;分析所有SKU,以利润最大化为目标来定价和清理库存;根据客户的购买习惯,为其推送他可能感兴趣的优惠信息;从大量客户中快速识别出金牌客户等等。endprint

猜你喜欢

人脸识别人脸虚拟现实
人脸识别 等
有特点的人脸
揭开人脸识别的神秘面纱
三国漫——人脸解锁
REALITY BITES
虚拟现实技术向科幻小说借灵感
基于类独立核稀疏表示的鲁棒人脸识别
马面部与人脸相似度惊人
基于K-L变换和平均近邻法的人脸识别
浅谈虚拟现实