APP下载

《椭圆及其标准方程》教学设计

2017-09-27马晶

课程教育研究·新教师教学 2015年19期
关键词:化简焦点轨迹

马晶

【分类号】G633.6

一、教学背景分析

本节课是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例,从知识上说,本节课是对坐标法研究几何问题的又一次实际运用,同时也是进一步研究椭圆几何性质的基础;从方法上说,它为进一步研究双曲线、抛物线提供了基本模式和理论基础,因此本节课起到了承上启下的重要作用。

二、教学目标

1.知识与技能:使学生掌握椭圆的定义,标准方程的推导和标准方程。

2.过程与方法:通过求轨迹方程的方法,借助于坐标法,培养学生用代数方法研究几何问题的能力,同时培养学生的数形转化的能力。

3.情感、态度与价值观:通过椭圆定义和标准方程的学习,培养学生的观察能力和探索能力,启发学生在研究问题时,抓住问题的本质,体会运动变化、对立统一的思想。

三、教学重点与难点

1.重点:椭圆的定义和椭圆的标准方程

2.难点:椭圆标准方程的推导

四、教学方法

1.用模型结合多媒体课件演示椭圆形成过程,加深对概念的理解

2.利用观察、分析、归纳、概括、自主探究、合作交流的方法推导标准方程,利用问题探究式教学启发学生思考,激发学生学习的积极性。

五、教学过程

1.新课引入

师:(1)大家学习了如何求轨迹方程,需要分成哪几个步骤?

生:思考回答

师:(2)圆这种轨迹是怎样形成的?

生:圆是在平面内到一个定点的距离等于定长的点的轨迹

师:(3)那到两个定点的距离之和为定值的点的轨迹是什么呢?

生:小组内拿出准备好的细绳,分别演示距离之和等于和大于两定点之间距离的情况。分析总结出椭圆的限制条件。若 > ,则点P的轨迹是椭圆,若 = ,则点P的轨迹是线段 。

2.新课讲解

师:(4)根据大家的演示,你能否求出椭圆的方程?怎样建立坐标系比较恰当?奇数组把焦点建在x轴上,偶数组建在y轴上。

生:组内合作交流,根据求轨迹方程的步骤列出方程。

师:(5)如何将方程化简?什么方法可以把根号去掉?

生:移项平方或分子有理化(老师指导化简过程)

师:(6)令 ,可以将方程化简为?

生: (x轴), (y轴)

师:(7)关于椭圆的标准方程,我们应该注意哪些内容?

生:a,b,c的含义以及它们之间的关系焦点的位置决定了方程的形式,需要观察分母的大小。

师:下面我们来看一下这节课的主要题型

例1:定义的应用

(1)方程 可以化简为?

(2)椭圆的方程是 , 为焦点,点P在椭圆上,则

的周长为?

过 的直线与椭圆交于A.B两点,则 的周长为?

生:小组内讨论交流3分钟

例2:根据下列条件,求椭圆的标准方程

(1) ,焦点在x轴上

(2) ,焦点在y轴上

(3)两个焦点的坐标分别为(-3,0)(3,0),椭圆上一点P与两焦点的距离的和是8

(4)两个焦点的坐标分别为(0,-4)(0,4),并且椭圆经过( )

(5)已知A(-5,0) B(5,0), 的周长为26,求 的顶点C的轨迹方程

生:10分钟做题时间

例3:求下列方程表示的椭圆的焦点坐标

(1)

(2)

(3)

生:上黑板演示

例4:含參数的方程问题

(1)若方程 表示椭圆,求k的取值范围

(2)若方程 表示焦点在x轴上的椭圆,求k的取值范围

师:你还能想出怎样的问法?

生:表示焦点在y轴上的椭圆,表示圆

师:好,同学们对椭圆理解得很好,通过这节课你的不断探索,都学会了哪些知识?

生:我们知道哪样的轨迹才是椭圆,推导了椭圆的标准方程,而且还学会了如何去求方程,以及焦点坐标。

师:很好,椭圆是一种很美的图形,课下仔细观察,想一想它都有哪些性质?

五、教学反思

椭圆是考试的重点内容,通过问题探究式学习,能激发学生的学习兴趣,加深对知识的印象,整节课的重点应放在求椭圆的标准方程上。

猜你喜欢

化简焦点轨迹
焦点
浅谈求轨迹方程中的增解与漏解
无从知晓
组合数算式的常见化简求值策略
“两会”焦点
捕捉物体运动轨迹
彩世界
焦点
一类特殊二次根式的化简