纳米硫化锰在储能装置中的应用
2017-09-12王相文徐立强
王相文,徐立强
纳米硫化锰在储能装置中的应用
王相文1.2,徐立强2
(1. 德州职业技术学院,山东 德州 253000; 2 . 山东大学, 山东 济南 250100)
论述了硫化锰电子结构、晶型、形貌、制备方法。通过控制反应温度、浓度、硫源、锰源等参数控制 MnS 的晶型、形貌等影响储能装置性能的特征。通过各种MnS 及其复合物首圈充放电性能、循环圈数、充放电稳定性、比电容、能量密度和功率密度的对比,初步得到现阶段性能优良的用于储能装置中的 MnS 及其 MnS 复合材料。
氧化还原石墨烯(RGO);原子层沉积法;固相电解质界面膜;水热法
锰的核外电子排布为1s22s22p63s23p63d54s2,硫的核外电子排布1s22p22p63s23p4,锰原子的最外层2个电子容易失去被硫原子得到,形成稳定的硫化锰固体。根据锰原子和硫原子的空间结构不同,把硫化锰分为α-MnS有、β-MnS、γ-MnS三种晶型。其中α-MnS绿色结晶是一种常见的岩盐立方相晶体结构(=== 5.224 Å) ,密度4.05 g·cm-3,熔点1 620 ℃。β-MnS型为红色粉末,闪锌矿型,=0.561 1 nm。γ型为浅红色粉末,纤维锌矿型,=0.398 4 nm,=0.644 5 nm。700 ℃时呈p-型半导性。纳米MnS具有较高的比表面积、具有较小的尺寸,广泛用作高能量密度锂离子二次电池、绿色环保超级电容器等储能装置的电极材料来研究。
1 硫化锰的制备方法
硫化锰的工业方法主要是二氧化锰和硫酸反应,高温焙烧还原制取硫化锰[1];在锰矿中用硫酸浸取硫化锰;用锰粉和硫粉直接高温合成硫化锰[2]。但由于工业方法生产的硫化锰结晶度高,比表面积小,三种晶型共存等特点,不适用于储能装置的电极材料。目前用于电池材料的硫化锰制备方法主要有:
1.1 还原法
以硫酸锰为还原剂,乌洛托品为氧化剂,在高压反应釜内,充入氮气保护并密闭,升温至 300 ℃- 700 ℃,反应一段时间后取出,洗涤干燥得到墨绿色MnS粉末[3]。
1.2 溶剂热法[4-9]
把一种或几种反应物用溶剂溶解在反应釜中,在液相或超临界条件下,分散在溶液中的反应物发生物理和化学反应制备纳米MnS。该方法易于操作、反应体系密闭,可以制备易挥发和有毒物质的纳米材料,制备的纳米材料分散性较好。
用水作溶剂即为水热法[10-13],优点是制备的产品纯度高、晶型好、形状大小可控,成本低。
1.3 沉淀法[14-19]
沉淀法在液态下将含有锰源的不同反应物充分混合,在混合溶液中加入适当的沉淀剂(如OH-,C2O42-,S2-等),根据猛的化合物溶度积常数制备纳米粒子的前驱体沉淀物,再将此沉淀物进行洗涤、干燥、煅烧,从而制得相应的纳米粒子。常见的沉淀方法有共沉淀法、水解法、均相沉淀法等。纳米粒子的性质与溶液的浓度、温度、加热方式、沉淀剂的释放速度等因素有关。
1.4 其他制备方法
其他制备MnS的方法有生物制备法[20]、喷雾干燥法[21-23]、原子层沉积法[24-26]等。
2 纳米MnS的在锂离子电池中的应用
目前利用各种方法制备的纳米棒、纳米线、纳米管、纳米带等[27-29]材料,多用于陶瓷、涂料、光伏等行业,用于储能装置的纳米MnS及复合物材料要求充放电稳定、容量高、不溶于电解质溶液等特点。
由于MnS具有生产成本低,无污染、理论比容量较高等优点,广泛由于锂离子电池材料。根据纳米MnS的形貌、包覆、掺杂等组成的复合材料,其放电电流密度,首圈比容量,循环寿命等电化学性能,如表1所示。
表1 MnS的电化学电性能
由表1可知,无论用何种材料和MnS掺杂、复合或者自身改变形貌,他们的首圈放电比容量都高于MnS的理论比容量616 mA·h·g-1。通过改变MnS自身的形貌来提高电极材料的比容量,对首圈放电容量非常有效,由于固体电解质界面膜的存在和纳米材料自身的团聚性能,使得电极材料的循环寿命很低。
为了增加电极材料的比表面,降低材料的团聚性,增加材料的电子和离子通透性,降低材料的内阻;研究者在材料内部进行掺杂,外部进行包覆和改变形貌以提高MnS的电化学性能。由于石墨、碳等物质具有很高的导电性、具有一定孔率、比表面积较高等特性,被广泛用于MnS复合电极材料,像MnS/NC、 MnS/ BC、 MnS/C、MnS/G、MnS/RGO、MnS/MC等,大幅提高了MnS电极材料的首圈放电容量和循环性能。通过比较MnS/NC、MnS/C两种材料具有高电流密度和高循环寿命的优良特性,具有很大的市场应用前景。
3 纳米MnS在超级电容器中的应用
超级电容器除了和普通电容器具有的共性外,他还能在电极活性物质和电解液之间形成2个双电层,在某种意义上说,双电层既是一种电容器;同时在充放电过程中活性物质和电解液之间进行可逆氧化还原反应相当于一个化学电源。简单的说一个超级电容器就相当于三个普通电容器和一个化学电源。
超级电容器具有高功率密度、高电荷充放电率、良好的循环寿命及对环境友好等特点,吸引了广大科研人员的兴趣。寻找低成本、高比容量的电极材料开展了大量的研究,其中在MnS为电极材料的超级电容器特性如表2。
表2 MnS电极材料在超级电容器中的性能
通过表2可以看出氧化还原石墨烯、氮杂化氧化还原石墨烯、三元锰钴硫化物等MnS复合物作为超级电容器的活性物质,其超级电容器的性能较高,原因有:
(1) 在化学键和范德华力的作用下, MnS占据了rGO表面的含氧官能团和活性中心的位置;
(2) MnS和rGO相互作用有利于电子在其中传输,这对超级电容器的高比电容其关键作用;
(3) MnS固定在层状结构的rGO表面,增加了活性物质MnS和电解液的接触面积同时缩短了电子传输的通道;
(4) 电子的高速传输提高了氧化还原反应速度,增高了比电容;
(5) rGO表面的褶皱能够阻止MnS的团聚,保持MnS和电解液之间的距离;
(6) 大量而独特的孔状结构有利于电解液向电极材料内部扩散和电解液和复合材料的接触。
MnS/rGO、MnS/N-rGO、锰钴硫复合物三种复合物的比电容、能量密度和功率密度较高,在未来超级电容器用电极材料中占有重要的地位。
4 结论
在制备MnS各种方法中,溶剂热法易于操作,可以根据产品要求选择不同的溶剂进行反应;聚四氟乙烯反应釜可以耐酸碱腐蚀,反应体系密闭可以制备易挥发和有毒物质的纳米材料。制备MnS分散性较好、产品纯度高、晶型好、形状以及大小可控等特点,仍是一种比较受欢迎的传统方法。沉淀法由于溶度积常数的制约,使其在制备MnS时受到限制。由于喷雾干燥和原子沉积法能够精确控制产品的生长速度,成分的掺杂和包覆等优点,是将来一段时间内具有发展前景的MnS复合材料制备方法。
在MnS形貌上看一维的纳米棒、纳米线、纳米带;二维纳米片、纳米膜等很少用于储能装置的电极材料,常常把MnS制备成球状,中空球、介孔材料以增加他的比表面积,电子导电性和离子通透性等特性,用于储能装置的电极材料。利用碳、石墨烯、以及金属掺杂是MnS复合材料未来发展的方向。
[1]唐永福, 陈腾. 一种多孔纳米硫化锰及其制备方法: 中国, CN 106159239A [P]. 2016-11-23.
[2]石勇, 朱轩, 段建鑫,等.硫化锰生产新工艺: 中国, CN 101863513A [P]. 2010-10-20.
[3]杨少东.还原法制备纳米金属硫化物[D].合肥:合肥工业大学, 2012.
[4]郑小双.锂硫电池正极复合材料介孔碳/过渡金属硫化物(MnS)的制备及性能研究[D].福州:福州大学,2014.
[5]DZ Chen, HY Quan, GS Wang, et al. Hollow α-MnS Spheres and Their Hybrids with Reduced Graphene Oxide: Synthesis, Microwave Absorption, and Lithium Storage Properties[J]. ChemPlus Chem, 2013, 78:843-851.
[6]Yong Hao, Chunhui Chen, Xinyi Yang, et al. Studies on intrinsic phase-dependent electrochemical properties of MnS nanocrystals as anodes for lithium-ion batteries[J]. Journal of Power Sources,2017,338: 9-16.
[7]iaguo Yu, Hua Tang. Solvothermal synthesis of novel flower-like manganese sulfide particles[J]. Journal of Physics and Chemistry of Solids, 2008,69:1342-1345.
[8] Subhajit Biswas, Soumitra Kar, Subhadra Chaudhuri. Growth of different morphological features of micro and nanocrystalline manganese sulfide via solvothermal process[J].Journal of Crystal Growth, 2007,299 :94-102.
[9]祁元春,赵彦保,许红涛.形貌可控 γ-MnS纳米晶的制备及表征[J].化学研究,2006,4 (17):60-62.
[10]Meitang Liu, Yu Fu, Hongwen Ma, etal. Flower-like manganese-cobalt oxysulfide supported on Ni foam as a novel faradaic electrode with commendable performance[J].Electrochimica Acta,2016,191:916-922.
[11]Dezhi Chen, Hongying Quan, Guangsheng Wang, et al. Hollow a-MnS Spheres and Their Hybrids with Reduced Graphene Oxide: Synthesis, Microwave Absorption, and Lithium Storage Properties[J]. ChemPlusChem ,2013, 78:843-851.
[12]Feng Tao, Zhijun Wang, Lianzeng Yao, et al. Hydrothermal synthesis of 3D α-MnS flowerlike nanoarchitectures[J].Materials Letters,2007,61:4973-4975.
[13]YongCai Zhang, Hao Wang, Bo Wang, et al. Hydrothermal synthesis of metastable α-manganese sulfide crystallites[J] .Optical Materials,2003, 23:433-437.
[14]J D. Liu,X S. Zheng,Z F. Shi.et al. Sulfur/mesoporous carbon composites combined with γ-MnS as cathode materials for lithium/sulfur batteries [J].Ionics ,2014,20:659-664.
[15]Lei Zhang,Liang Zhou, Hao Bin Wu, et al. Unusual Formation of Single-Crystal Manganese Sulfide Microboxes Co-mediated by the Cubic Crystal Structure and Shape [J]. Angew. Chem. Int. Ed. 2012, 51:7267-7270.
[16]王宇菲,卓海宇.沉淀法制备纳米粉体及其形貌控制[J].湖南有色金属,2002,18 (5) :23-25.
[17]张光全,李金山.纳米复合含能材料的几种液相制备方法[J].中国学术期刊文摘, 2006 ,10 :1-2.
[18]安亭,赵凤起,张平.飞纳米含能材料制备研究的最新进展[J].纳米科技,2009, 6 (6) :60-67.
[19]罗明凤,李丽霞,杨毅.纳米CuO制备与应用技术进展[J].微纳电子技术, 2010,47 (5) :297-303.
[20]刘欣.纳米硫化锰的生物制备、性能表征及其形貌调控[D].北京:北京理工大学, 2015.
[21]Dae Soo Jung, Tae Hoon Hwang, Seung Bin Park, et al. Spray Drying Method for Large-Scale and High-Performance Silicon Negative Electrodes in Li-Ion Batteries[J].Nano Lett,2013,13:2092-2097.
[22] Samaneh Keshania, Wan Ramli Wan Daud, M.M. Nourouzi, etal. Spray drying: An overview on wall deposition, process and modeling[J]. Journal of Food Engineering ,2015,146 :152-162.
[23]Reinhard Vehring, Willard R. Foss, David Lechuga-Ballesteros. Particle formation in spray drying[J]. Aerosol Science,2007,38: 728-746.
[24]Kyung Min Jeon, Jung Sang Cho, Yun Chan Kang. Electrochemical properties of MnS-C and MnO-C composite powders prepared via spray drying process[J]. Journal of Power Sources ,2015,295: 9-15.
[25]A.W. Ott, K.C. McCarley, J.W. Klaus,et al. Atomic layer controlled deposition of A12O3films using binary reaction sequence chemistry[J]. Applied Surface Science,1996,107 :128-136.
[26] Richard W. Johnson, Adam Hultqvist, Stacey F. Bent. A brief review of atomic layer deposition: from fundamentals to applications[J]. Materialstoday,2014, 17, 5:236-246.
[27]Jin Joo, Hyon Bin Na, Taekyung Yu, et al. Generalized and Facile Synthesis of Semiconducting Metal Sulfide Nanocrystals[J].J. AM. CHEM. SOC,2003, 125:11100-11105.
[28]Juan Beltran-Huarac, Oscar Resto, Jennifer Carpena-Nuñez, et al. Single-Crystal γ-MnS Nanowires Conformally Coated with Carbon[J].ACS Appl. Mater. Interfaces,2014, 6:1180-1186.
[29]Younan Xia, PeiDong Yang, Yugang Sun, et al. One-Dimensional Nanastructures: Synthesis, Characterization and Applications[J]. Adv. Mater,2003, 15:353-389.
[30]Juan Beltran-Huarac, Javier Palomino, Oscar Resto, et al. Highly-crystalline γ-MnS nanosaws[J]. RSC Adv, 2014, 4:38103-38110.
[31]Yang Liu, Yun Qiao, Wu-Xing Zhang, et al. Coral-like α-MnS composites with N-doped carbon as anode materials for high-performance lithium-ion batteries[J]. J. Mater. Chem, 2012, 22: 24026-24033.
[32] 侯向阳,刘景东.以竹炭负载 MnS、S 复合材料为正极的锂硫电池[J].电池,2016,46,5:243-246.
[33]Kyung Min Jeon, Jung Sang Cho, Yun Chan Kang. Electrochemical properties of MnS-C and MnO-C composite powders prepared via spray drying process[J]. Journal of Power Sources,2015,295: 9-15.
[34]Dezhi Chen, Hongying Quan, Xubiao Luo, et al .3-D graphene cross-linked with mesoporous MnS clusters with high lithium storage capability[J]. Scripta Materialia, 2014,76 :1-4.
[35]黄家锐,刘东旭,谷翠萍,等.一种硫化锰石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池:中国, CN106159239A[P]. 2016-11-23.
[36]J. D. Liu, X. S. Zheng, Z. F. Shi, et al. sulfur/mesoporous carbon composites combined with γ-MnS as cathode materials for lithium/sulfur batteries[J]. Ionics,2014, 20:659-664.
[37]Ning Zhang, Ran Yi, Zhong Wang, et al. Hydrothermal synthesis and electrochemical properties of alpha-manganese sulfide submicrocrystals as an attractive electrode material for lithium-ion batteries[J]. Materials Chemistry and Physics,2008, 111: 13-16.
[38]Yong Hao, Chunhui Chen, Xinyi Yang, et al. Studies on intrinsic phase-dependent electrochemical properties of MnS nanocrystals as anodes for lithium-ion batteries[J]. Journal of Power Sources, 2017,338 : 9-16.
[39]Yongfu Tang, Teng Chen, Shengxue Yu, et al. Synthesis of graphene oxide anchored porous manganese sulfide nanocrystals via the nanoscale Kirkendall effect for supercapacitors[J]. J. Mater. Chem. A, 2015, 3:12913-12919.
[40]Teng Chen, Yongfu Tang, Yuqing Qiao, et al. All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials [J]. Scientific Reports,2016, 6:23289(1-9).
[41]Guanggao Zhang, Menglai Kong, Yadong Yao, et al. One-pot synthesis of γ-MnS/reduced graphene oxide with enhanced performance for aqueous asymmetric supercapacitors[J].Nanotechnology,2017,28: 065402.
[42]Xianfu Li, Jianfeng Shen, Na Li, et al. Fabrication of γ-MnS/rGO composite by facile one-pot solvothermal approach for supercapacitor applications [J].Journal of Power Sources ,2015,282: 194-201.
[43]Hongying Quan, Baochang Cheng, Dezhi Chen, et al. One-pot synthesis of α-MnS/nitrogen-doped reduced graphene oxide hybrid for high-performance asymmetric supercapacitors[J]. Electrochimica Acta ,2016,210: 557-566.
[44]Surjit Sahoo, Chandra Sekhar Rout. Facile Electrochemical Synthesis of Porous Manganese-Cobalt-Sulfide Based Ternary Transition Metal Sulfide Nanosheets Architectures for High Performance Energy Storage Applications[J]. Electrochimica Acta, 2016,220: 57-66.
[45]Yongfu Tang, Teng Chen, Shengxue Yu. Morphology controlled synthesis of monodispersed manganese sulfide nanocrystals and their primary application in supercapacitors with high performances[J].Chem. Commun, 2015, 51: 9018-9021.
[46]Muhammad Sufyan Javed, Xiangyu Han, Chenguo Hu, et al. Tracking Pseudocapacitive Contribution to Superior Energy Storage of MnS Nanoparticles Grown on Carbon Textile [J].ACS Appl. Mater. Interfaces, 2016, 8:24621-24628.
[47]R.B. Pujari, A.C. Lokhande, A.A. Yadav , et al. Synthesis of MnS microfibers for high performance flexible supercapacitors[J]. Materials and Design,2016,108: 510-51.
Application of MnS Nanoparticles in Storage device
1.2,2
(1. Dezhou Vocational and Technical College,Shandong Dezhou 253000, China; 2. Shandong University, Shandong Jinan 250100,China)
Electronic structure, appearance, crystalline feature and preparation methods of manganese sulfide were discussed. The properties of manganese sulfide were controlled by adjusting the temperature and concentration of the sulfide and manganese compound in the reaction. The charge and discharge performances of the first cycle, the number of cycles,the stabilities of charge and discharge,specific capacitances,energy densities and power densities of MnS and its compound were compared, so the materials for storage device with better performance were obtained.
Reduced graphene oxide(RGO);Atomic layer deposition;Solid electrolyte interface (SEI) film; Hydro-thermal method
TQ 125.1
A
1671-0460(2017)08-1629-04
2017-06-15
王相文(1978-),男,山东省德州市人,讲师,硕士,2007年毕业于中国科学院青海盐湖研究所无机化学专业,盐湖卤水净化向:现从事化学电源材料研究。E-mail:wxw_wyy@126.com。